Omnipresent and low-overhead application debugging

Robert Strandh

robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux
Talence, France

ABSTRACT

The state of the art in application debugging in free Common
Lisp implementations leaves much to be desired. In many
cases, only a backtrace inspector is provided, allowing the
application programmer to examine the control stack when
an unhandled error is signaled. Most such implementations do
not allow the programmer to set breakpoints (unconditional
or conditional), nor to step the program after it has stopped.

Furthermore, even debugging tools such as tracing or man-
ually calling break are typically very limited in that they do
not allow the programmer to trace or break in important sys-
tem functions such as make-instance or shared-initialize,
simply because these tools impact all callers, including those
of the system itself, such as the compiler.

In this paper, we suggest a technique that solves most of
these problems. The main idea is to have a debugger thread
debug one or more application threads, with all these threads
running in the same image. Tracing and setting breakpoints
have an effect only in the debugged thread so that system code
running in other threads is not impacted. We discuss several
advantages of this technique, and in particular how it can
make debugging omnipresent, i.e., not requiring recompilation
to get its benefits. We describe how to achieve this advantage
while keeping the overhead low for threads that are not being
debugged.

CCS CONCEPTS

e Software and its engineering — Software testing
and debugging; Runtime environments;

KEYWORDS
CLOS, Common Lisp, Compilation, Debugging

ACM Reference Format:

Robert Strandh. 2021. Omnipresent and low-overhead application
debugging. In Proceedings of the 13th European Lisp Symposium
(ELS’20). ACM, New York, NY, USA, 8 pages. https://doi.org/
10.5281/zenodo.3747548

1 INTRODUCTION

Good debugging tools are essential for the productivity of
software developers. In this paper, we are concerned with

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ELS’20, April 27-28 2020, Zirich, Switzerland

© 2020 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.3747548

application programmers as opposed to system programmers.
The difference, in the context of this paper, is that the tech-
niques that we suggest are not adapted to debugging the
system itself, such as the compiler. Instead, throughout this
paper, we assume that, as far as the application programmer
is concerned, the semantics of the code generated by the
compiler corresponds to that of the source code.

In this paper, we are mainly concerned with Common
Lisp [1] implementations distributed as so-called FLOSS, i.e.,
“Free, Libre, and Open Source Software”. While some such
implementations are excellent in terms of the quality of the
code that the compiler generates, most leave much to be
desired when it comes to debugging tools available to the
application programmer.

Perhaps the most advanced development environment avail-
able to application programmers using FLOSS Common Lisp
implementations is the one that consists of GNU Emacs?
(also [4] [6]) with SLIME?. Many application programmers
consider this development environment to be outstanding.
Some even believe that it is one of the best, no matter the
programming language under consideration.

However, although this environment does a fairly good job
with exploiting the features of the Common Lisp implemen-
tations that it supports, limitations of those implementations
severely restrict what the application programmer can do.
In particular, most of these implementations have only very
limited facilities for setting breakpoints (unconditional or
conditional) and for stepping.

Even in implementations that allow the programmer to
set a breakpoint in some code, the places where it is allowed
are necessarily restricted, given how breakpoints are typically
implemented. The reason for this restriction is that such a
breakpoint would be visible to all callers of the code in which
the breakpoint is set. When these callers include important
system code such as the compiler, or perhaps the debugger
itself, setting such a breakpoint would make the entire system
useless. This restriction typically applies also to tracing. Most
Common Lisp implementations would either not allow for
the programmer to trace important system functions such
as make-instance or shared-initialize, or these functions
would be rendered useless with any such attempt. The reason
is of course that these functions would be called by the system
itself, so that output would be drowned in traces of calls that
are unimportant to the application programmer.

In this paper, we suggest a technique that solves these
problems. The key features of this technique is that break-
points and traces take effect only in a thread that is executed

 https://www.gnu.org/software/emacs/manual /emacs.html
Zhttps://common-lisp.net /project /slime/doc/html/

https://doi.org/10.5281/zenodo.3747548
https://doi.org/10.5281/zenodo.3747548
https://doi.org/10.5281/zenodo.3747548

ELS’20, April 27-28 2020, Ziirich, Switzerland

from a special debugger thread. Thus, even though a function
might contain a breakpoint, when that function is called
as a normal part of an application, the breakpoint will not
have any effect. Only when that function is called (directly or
indirectly) from the special debugger thread is the breakpoint
visible.

The technique presented in this paper is yet to be im-
plemented. We have, however, conducted experiments that
suggest that it is entirely viable. We plan to make it the
default technique used in our system SICL (see Section 3),
currently under development.

Throughout this paper, we use the term user to mean the
person operating the debugger or some debugging-related
facility, so as to distinguish this person from the application
programmer, by which we mean the author of the code being
debugged. The two can obviously be one and the same person
in two different roles.

2 PREVIOUS WORK

2.1 Process-based debugging

With systems like UNIX, debugging is usually performed
as an interaction between two processes. The debugger runs
in one process and the application in another process. For
a breakpoint, the code of the application is modified by
the debugger so that the application sends a signal to the
debugger when the breakpoint has been reached. For this
purpose, the debugger maps the code pages of the application
as copy on write (or COW). With this technique, instances
of the same application that are not executed under the
control of the debugger are not affected by the modified code.
In particular, with this technique, any application can be
debugged, including the debuggger itself.

Some FLOSS Common Lisp implementations suggest the
use of this debugging technique, by means of some existing
debugger such as GDB? (also [7]), in order to set breakpoints.
In particular, the CCL (See Section 2.3.) documentation
mentions that this technique is possible, and it is also the
technique recommended for ECL (See Section 2.4.).

2.2 SBCL

The SBCL Common Lisp implementation® has a breakpoint
facility. Given a code location, a breakpoint can be set, which
results in the code being modified at that location, so that an
arbitrary function (given to the constructor of the breakpoint)
is called when execution reaches that location.

The only feature that uses the breakpoint facility is trace.
Furthermore, it is hard for the user to take advantage of
the breakpoint facility directly, given that a function such as
make-breakpoint requires an argument indicating the code
location. We are unaware of the existence of a debugger for
SBCL that can use the breakpoint facility.

SBCL also has a single stepper that the manual says is
“Instrumentation based”. As it turns out, the kind of instru-
mentation used by the stepper is not that of the breakpoint

3https://sourceware.org/gdb/current/onlinedocs/gdb/
4http://www.sbcl.org/

Robert Strandh

facility. Instead, when the value of the debug optimization
quality is sufficiently high compared to the values of other
optimization qualities, the compiler inserts code that signals
conditions that are specific to the stepper.

2.3 CCL

The CCL Common Lisp implementation® does not have the
concept of breakpoints.

The CCL trace command uses encapsulation, meaning
that the association between the name of a function and the
function object itself is altered so that it contains a wrapper
function that displays the information requested and that
calls the original function to accomplish its task.

Currently, CCL does not have a working single stepper.

2.4 ECL

The ECL Common Lisp implementation® does not have the
concept of breakpoints, so an external debugger such as GDB
has to be used for breakpoints. ECL does have a special
instruction type in the bytecode virtual machine that is used
for stepping.

The trace facility uses encapsulation.

2.5 Clasp

The Clasp Common Lisp implementation” does not have the
concept of breakpoints, nor does it have a stepper. The trace
facility uses encapsulation.

2.6 LispWorks

The LispWorks Common Lisp implementation® provides
breakpoints. Breakpoints can be set either from the step-
per or from the editor. The first time a breakpoint is set in a
definition, the source code of the defining form is re-evaluated
with additional annotations that provide information for the
stepper.

When a breakpoint has been set, it is active no matter
how the code containing it was called. If that code was called
outside the stepper, the stepper is automatically started.
Thus, breakpoints provide the essential mechanism for the
stepper.

Since setting a breakpoint requires access to the source
code, and since the source code of the system itself is not
supplied, the user can not set breakpoints in system code.

The trace facility in LispWorks is accomplished through
encapsulation.

8

2.7 Allegro

The Allegro Common Lisp implementation® has the most com-
plete and most sophisticated implementation of breakpoints
of all the Common Lisp implementations we investigated.

Shttps://ccl.clozure.com/
Shttps://common-lisp.net/project/ecl/
Thttps://github.com/clasp-developers/clasp
Shttp://www.lispworks.com/products/lispworks.html
9https://franz.com/products/allegro-common-lisp/

Omnipresent and low-overhead application debugging

High-level debugging features are based on a low-level
breakpoint mechanism described in a paper by Duane Ret-
tig [5]. In many respects, the low-level mechanism is similar
to the one used by UNIX-style debugging, in that it replaces
the ordinary machine instruction by one that will trap, and
thus cause the operating system to send a signal to the Lisp
process. However, their mechanism differs in a significant way
from the one used by UNIX-style debugging, in that it allows
the breakpoint to be handled by the same operating-system
process that contains it, with very few exceptions.

Same-process debugging is made possible by their mecha-
nism that allows existing breakpoints to be installed or not.
Only installed breakpoints correspond to replaced instruc-
tions, whereas uninstalled breakpoints are remembered by
the system and can be installed according to the kind of
debugging that the higher-level tool implements. The clever
aspect of their mechanism is to have the signal handler start
its action by uninstalling all breakpoints. Thus, even if a
breakpoint exists in some system code that is also used by
the debugger, once the debugger is entered, the breakpoint
is no longer active. Had the breakpoints remained installed,
issuing commands inside the debugger might have invoked
some code with a breakpoint, thereby halting the execution
of the debugger itself.

This mechanism allows for instruction-level stepping in a
way similar to what is possible in separate-process UNIX-
style debuggers. Just as with UNIX-style debugging, any
instruction can be replaced by a different one that will trap
to the debugger. As a result, it is possible to execute one
instruction at a time by simply trapping after each instruction.
Crucially, however, this mechanism is then used to build high-
level tools such as source-level debuggers, steppers, etc.

3 MAIN FEATURES OF THE SICL
SYSTEM

SICL'? is a system that is written entirely in Common Lisp.
Thanks to the particular bootstrapping technique [2] that
we developed for SICL, most parts of the system can use
the entire language for their implementation. We thus avoid
having to keep track of what particular subset of the language
is allowed for the implementation of each module.

We have multiple objectives for the SICL system, including
exemplary maintainability and good performance. However,
the most important objective in the context of this paper is
support for excellent debugging tools. We think it is going to
be difficult to adapt existing Common Lisp implementations
to support the kind of application debugging that we consider
essential for good programmer productivity.

Another main objective of the SICL system is safety. In this
context, by this term we mean that the system must always
be in a coherent internal state. When a system becomes
unsafe, it may crash, or (worse) silently produce the wrong
answer.

0https://github.com /robert-strandh /SICL

ELS'20, April 27-28 2020, Ziirich, Switzerland

There are many situations described in the Common Lisp
standard that have undefined or unspecified behavior, such
as:

(1) Many times when a standard function is called with
some argument that is not of the type indicated by the
corresponding dictionary entry in the Common Lisp
standard document, the behavior is undefined, allowing
the implementation to avoid potentially costly tests for
exceptional situations.

(2) When a non-local transfer is attempted to an exit
point that has been “abandoned”, the standard does
not require this situation to be detected, making it
possible for the system to crash or (worse) give the
wrong result.

(3) When some entity is declared dynamic-extent, but
some necessary condition for this declaration is violated,
the implementation is again not required to detect the
problem, again potentially resulting in a crash or an
incorrect computation.

Fortunately, most potential situations of this type are not
taken advantage of by a typical Common Lisp implementation
in order to improve performance, but some are. We think
that the spirit of the Common Lisp standard is to have a safe
language, and that many of these situations of undefined or
unspecified behavior exist only to avoid significantly more
work for the system maintainers at the time the standard
was established.

For that reason, in the SICL system, we do not intend to
take advantage of these situations to make the system unsafe
for the purpose of better performance, even though we might
have to work somewhat harder in order to maintain good
performance in all situations.

Many debugging techniques can make the system unsafe.
For example, if the debugger allows the user to arbitrarily
change the value of a lexical variable, the new value might vi-
olate some assumption made by the compiler for the program
point in question. Such a violation is very likely to make the
system unsafe. The work described in this paper is designed
to keep the system safe.

4 OUR TECHNIQUE
4.1 Two versions of every function body

We provide two different versions of every function body*.
One version, called the ordinary version, and the other one
is called the debugging version. Each version is provided as a
separate entry point for the function'?. The two versions are
similar (but not identical) copies of the entire function body.

By including both versions in the same function, we make
it unnecessary for the application programmer to recompile
the code with higher debug settings when it is desirable to
have more debugging information than what the compiler
would generate by default.

M This idea was suggested by Michael Raskin.
12This idea was suggested by Frode Fjeld.

ELS’20, April 27-28 2020, Ziirich, Switzerland

The ordinary function body is compiled using every typical
optimization technique used by a good compiler, including:

constant folding,

dead code elimination,

common sub-expression elimination,
loop-invariant code motion,
induction-variable optimization,
elimination of in-scope dead variables, and
tail-call optimization.

Some of these optimization techniques are essential for high-
performance code, but many of them can make it significantly
harder for the user to understand what the program is doing;:

e Common sub-expression elimination and similar tech-
niques for redundancy elimination may make it im-
possible to set a breakpoint in some part of the code,
simply because that code has been eliminated by the
compiler.

e When a variable is used for the last time, the com-
piler typically reuses the place that it occupies for
other purposes, even though the variable may still be
in scope. This optimization makes it impossible for
the user to examine the value of a variable that has
been eliminated. A user with a poor understanding of
compiler-optimization techniques will find the result
surprising.

e Loop-invariant code motion results in code being moved
from inside a loop to outside it. Any attempt by the
application programmer to set a breakpoint in such
code will fail.

e Induction-variable optimization will eliminate or re-
place variables in source code by others that are more
beneficial for the performance of the computation,
again making it harder for the user to debug the code.

e Tail-call optimization exploits the fact that the stack
needs to reflect only the future of the computation,
but the past can be omitted. For the purpose of debug-
ging, the past of the computation provides essential
information to the developer.

To avoid many of these inconveniences to the user, the debug-
ging version of the function body is compiled in a way that
makes the code somewhat slower, but much more friendly
for the purpose of debugging. Some of the optimization tech-
niques cited above will not be performed at all, or only in
a less “aggressive” form. Messages from the compiler (such
as when dead code is eliminated) are emitted based on the
compilation of the normal version of the function body so
that the maximum amount feedback is obtained.

Notice that the existence of the two versions of the function
body makes it usually unnecessary for the programmer to
explicitly indicate values of the debug optimize quality. In
fact, forcing the programmer to set this value is often a major
inconvenience, since it typically requires the programmer to
choose between debugging convenience and execution speed.
The speed and compilation-speed optimize qualities may
influence compilation of the the normal version of the body,
but not the debugging version. The debugging version will

Robert Strandh

in general be much faster to generate because of the absence
of most optimization passes.

Furthermore, the debugging version of the code is com-
piled so that a small routine is called immediately before
and immediately after the execution corresponding to the
evaluation of a form in the source code. In order to determine
whether a breakpoint is present at that particular location
in the source code, this routine performs a query of a table
managed by the debugger. While the details of how this table
is implemented might evolve, here we give one example of
such an implementation, thereby arguing that performing a
query is not overly expensive in terms of performance.

As an example of implementation of this table, it might
be split into two sub-tables called the summary table and
the breakpoint table. Both these tables are managed by the
debugger, in that actions on the part of the user may alter
their contents. The application consults these tables, directly
or indirectly, to determine whether a breakpoint is present.

The purpose of the summary table is to provide a quick test
that almost always indicates that no breakpoint is present.
Thus, the summary table is a fixed-size bit vector. The size
will typically be a small power of 2, for instance 1024 which
represents a modest 16 64-bit words on a modern processor.
The application routine computes the value of the program
counter modulo the size of the table in order to determine
an index. If the entry in the table contains 0, then there is
definitely not a breakpoint present at the source location in
question. Since there are typically only a modest number
of breakpoints in a program, most of the time, the entry
will contain a 0, making the routine return immediately, and
normal form evaluation to continue. The debugging version
of the function body accesses this table early on in order
to create a reference to it in a lexical variable. This lexical
variable is subject to register allocation as usual.

If the entry in the summary table contains 1, then there
is a breakpoint at some value of the program counter that,
when taken modulo the size of the table, has a breakpoint
present. If this is the case, then the routine consults the
breakpoint table. In other words, the summary table acts
as a Bloom filter [3], in that false positives are possible, but
false negatives are not. The size of the table determines the
probability of a false positive.

The breakpoint table is a hash table in which the keys are
values of the program counter'® and the values are objects
that the debugger uses in order to determine information
about the breakpoint in question. When the routine finds
that a breakpoint is present at the current source location, it
informs the debugger. Details of the communication between
the application thread and the debugger are discussed in
Section 4.2.

In the ordinary version of the function body, when a func-
tion call is made, the caller uses the entry point of the callee
corresponding to the ordinary version of the body of the
callee. In the debugging version of the function body, on the

13In implementations where code can be moved by the garbage col-
lector, this table must be re-hashed after a collection. The tentative
decision for SICL is to have all code at fixed locations.

Omnipresent and low-overhead application debugging

other hand, when a function call is made, the caller uses
the entry point of the callee corresponding to the debug-
ging version of the body of the callee. This mechanism thus
automatically propagates the information about debugging
throughout the call chain.

4.2 Communication between the debugger
and the application

Debuggers in UNIX systems have full access to the address
space of the application, including the stack and the lexi-
cal variables. A UNIX debugger can therefore modify any
lexical variable and then continue the execution of the ap-
plication. Such manipulations may very well violate some of
the assumptions made by the compiler for a particular code
fragment. For example, if the code contains a test for the
value of a numeric variable, the compiler may make different
assumptions about this value in the two different branches
executed as a result of the test.

Allowing a debugger to make arbitrary modifications to
lexical variables, let alone to any memory location, in a
Common Lisp application program will defeat any attempts
at making the system safe, and safety is one of the objectives
of the SICL system as expressed in Section 3. We must
therefore come up with a different communication protocol
that keeps the system safe.

Our design contains two essential elements for this purpose:

(1) The debugger consists of an interactive application
with a command loop. An iteration of this command
loop can of course be prompted by a user interaction.
However, when the application detects a breakpoint by
querying the tables described in Section 4.1, it injects
a command into the command loop of the debugger,
triggering the execution of code in the debugger to
handle the breakpoint.

(2) A shared queue is used to send messages from the de-
bugger to the application. This queue has a semaphore
associated with it.

(3) Once the application has informed the debugger about
a breakpoint, it attempts to dequeue the next message
on the queue. If the queue is empty, the application
automatically waits on the associated semaphore, until
the debugger issues an enqueue operation with instruc-
tions for the application.

The debugger is in charge of taking into account the com-
mands issued by the user. When the user indicates that a
certain action should be performed at a particular place in
the source code, the debugger populates the two tables men-
tioned in Section 4.1, and records the particular action the
user desires, for example:

e The user might indicate that the application should
stop and wait for further actions by the user, after
the user has examined the state of application data.
In this case, the debugger records this desire in the
breakpoint table. When the application then reaches
the breakpoint in question, the debugger waits for
further user action in its command loop.

ELS'20, April 27-28 2020, Ziirich, Switzerland

debugger | commands % application
ﬂ breakpoints
write shared read
queue

read summary | read
Write table

read |breakpoint | read
Write table

Figure 1: Communication between user, application,
and debugger.

e After the user has examined the state of application
data as a result of the application having stopped, the
user can issue a command that makes the application
continue normal execution. The debugger then immedi-
ately sends a message to this effect to the application.

e The user might indicate that a trace message should
be printed without stopping the application. Then,
when the breakpoint is reached, the debugger displays
the message to the user and sends a message to the
application to continue execution.

e The user can also indicate that the execution of the
application should be stepped in one of several different
ways:

— next: Execution stops at the next possible program
point.

— in: Execution stops at the beginning of a function
being called.

— out: The remaining sub-forms of the form containing
the current breakpoint are evaluated, and execution
stops immediately after the evaluation of that form.

— over: When a breakpoint is reached that is located
immediately before a form is evaluated, the form is
evaluated and execution stops immediately after this
evaluation.

— finish: Execution of the currently executing func-
tion terminates, and stops in the calling function
immediately after the call.

The debugger then sets one or more volatile breakpoints

(i.e., breakpoints that will be removed once reached) at

source locations corresponding to the type of stepping

required. It then instructs the application to continue
execution as usual.

To allow for the user to examine the state of the applica-
tion, when the application thread detects a breakpoint, the
command it injects into the debugger command loop contains
a complete list of live local variables and their values, as well
as of special variables bound in the application thread.

Since we intend to provide debugger commands for exam-
ining and modifying application data, we must make sure

ELS’20, April 27-28 2020, Ziirich, Switzerland

that any such manipulation on the part of the user preserves
the integrity of the application.

In particular, any assumptions made by the compiler about
the structure or type of some lexical variable must be im-
possible to violate through the modification of the value of
a lexical variable. We obtain this property by making sure
that the compiler does not propagate any information about
the structure or type of lexical variables between program
points that admit breakpoints. Thus, any run-time manipu-
lation that requires this structure or type to be known must
be preceded by an explicit test, and the compiler does not
generate code that admits a breakpoint between the test and
the manipulation.

4.3 Debugger commands available to the
user

We have an embryonic implementation of an interactive de-
bugger, called Clordane.!* We use the McCLIM library for
writing graphic user interfaces as a basis for this tool. Cur-
rently, Clordane can show the source code of an application
(one source file at a time) and an indication of the place of a
breakpoint. The application being debugged is then compiled
with the SICL compiler, generating high-level intermediate
representation (HIR). The HIR code is then interpreted by a
small program running in a host Common Lisp implementa-
tion.

The communication protocol described in Section 4.2 has
been implemented and works to our satisfaction, but only a
small subset of interactions have been implemented so far.

We think that the following commands must be imple-
mented in a fully featured debugger:

e The user should be able to point to a location in the
source code to indicate a particular action to be taken
at that point:

— Stop the execution of the application and wait for
further actions.

— Print a trace message, possibly containing the values
of live variables, and then continue the execution.
It should be possible to make the action conditional,
based on some arbitrary expression to be evaluated
in the debugger thread. This expression can contain

references to live variables in the application.

e When the application is stopped, the user should be
able to examine live variables, and (in some cases, with
restrictions) modify their values.

e Also, when the application is stopped, the application
programmer should be able to issue one of several types
of stepping commands, implicitly indicating the next
location for the application to stop.

4 The name Clordane is a deliberate misspelling of “Chlordane” which
is a pesticide that was banned in most countries in the 1980s. The
misspelling was designed to suggest the Common Lisp language and
to make answers by search engines less cluttered.

Robert Strandh

5 BENEFITS OF OUR TECHNIQUE

Our technique differs both from the tradition of debugging
in UNIX-type systems and from the tradition used in FLOSS
Common Lisp systems.

5.1 Difference compared to UNIX-like
systems

Whereas UNIX-like systems typically run the debugger in a
different process from that (or those) of the application, with
our technique we run both the debugger and the application
in the same process.

The main advantage of this organization is that communi-
cation between the debugger and the application is greatly
simplified. There is no need for a wire protocol to encode
and decode data in the form of sequences of octets, simply
because with a single process, the address space is shared
between the debugger and the application. Instead, we can
send data in the form of arbitrarily complex data structures
between the two.

5.2 Difference compared to most FLOSS
Common Lisp systems

Most FLOSS Common Lisp implementations have a history
that started before multi-threading was common. As a result,
features such as breakpoints and tracing are often imple-
mented as modifications to the code.

For example, in SBCL, the user can choose to trace a
function in two different ways. One way is by means of
encapsulation, meaning that the function is not modified, and
instead wrapped in a small routine that then replaces the
function as associated with the function name. The function
being traced is not modified. The other way is by means of a
breakpoint; that is, the code of the function being traced is
modified.

However, in both cases, every caller of the function being
traced is affected, barring a caller that is in possession of the
function object itself, rather than its name. As a result, it is
very likely impractical to trace system functions that may
be used internally by the system. For example, tracing find
or position (if at all possible) is likely to generate so much
information from callers that are irrelevant to the user as
to make the information impossible to exploit. And tracing
functions such as print, format, or write would be entirely
impossible, since the trace output would very likely call these
functions in order to generate the output information meant
for the user.

With our suggested technique, tracing a function does
not create an encapsulation and does not modify the code
of the function. Instead, the existing code communicates
with the debugger, and the debugger, running in a different
thread, is in charge of displaying information to the user.
As a direct consequence, there are no restrictions such as
those indicated above. The only possible restriction has to
do with inlining, though it may very well turn out to be
possible to propagate debugging information with inlining,
thereby making it possible to trace, or to set breakpoints in

Omnipresent and low-overhead application debugging

any function such as car or +. However, it may turn out that
the inclusion of debugging code in such low-level functions
would be prohibitive in terms of performance of code run
under the control of the debugger.

Finally, a significant advantage to our technique is that
the application programmer does not have to choose between
compiling the code for debugging or for performance. In most
existing systems, in order for it to be possible to benefit from
all the debugging information possible, the programmer has to
compile the code with a combination of values of the existing
debug qualities that is not optimal for performance. This
limitation means that it is often necessary to recompile the
application for one of the two purposes. With the technique
presented in this paper, no such choice is required, since both
versions of the application are always available.

6 DISADVANTAGES OF OUR
TECHNIQUE

Perhaps the most obvious disadvantage of our technique
is that the size of the code will more than double. The
debugging version of the function body must implement
the same functionality as the non-debugging version, but in
addition to that functionality, it must also contain code for
communicating with the debugger. Furthermore, since fewer
optimizations are applied to the non-debugging version, even
without the code for communication, the debugging version
would be larger than the non-debugging version.

While the additional code will impact the memory foot-
print of the system, we do not think it will have any negative
influence on caching. The two versions of the body are kept
separate, and the same version is typically executed repeat-
edly.

Feedback on draft versions of this paper indicate that many
readers are worried about the possibility of the behavior of the
different versions of the function body described in Section 4.1.
This worry is based on experience, as this situation is common,
especially with implementations of programming languages
other than Common Lisp. As we see it, there are two possible
causes for such difference in behavior:

(1) A defect in the compiler can result in native code that
does not correspond to the semantics of the source
code, and the resulting code can be different in the
different versions.

(2) The compiler is exploiting undefined or unspecified
behavior, probably in order to improve performance
of the resulting code, and it exploits such behavior in
different ways in the two different versions.

We briefly addressed the first cause in Section 1, by specif-
ically targeting application programming, assuming that the
compiler is essentially free of defects.

The second cause was addressed in Section 3, where we
indicated that the SICL system does not intend to take
advantage of undefined situations that will introduce any
such differences in application behavior.

Finally, the fact that the technique proposed in this paper
is incompatible with the way most Common Lisp systems

ELS'20, April 27-28 2020, Ziirich, Switzerland

work, makes it unlikely that existing systems will be able to
use it. We are convinced, however, that our technique will
represent a major advantage in terms of productivity for the
application programmer.

7 CONCLUSIONS AND FUTURE
WORK

We believe that a decent development environment for Com-
mon Lisp must include a very feature-full debugger for appli-
cation programs, and we firmly believe that the best way of
accomplishing such an environment is to have the debugger
execute in the same process as the application, but to have
the application react to debugging operations only when ex-
ecuted under the control of the debugger. Here “debugging
operations” include the tracing of function calls, since that
mechanism is based on the general breakpoint mechanism
described in this paper.

While it may seem like a valid objection that the appli-
cation programmer, as a result of detecting a defect, must
rerun the application from the debugger in order to benefit
from the features proposed by our technique, we disagree
with this objection. We simply think that there is usually
no valid reason to run the application outside the debugger
during the development phase. The only exceptions we can
think of would be applications with extreme performance re-
quirements, or applications where response time is part of the
specification. While our technique requires the programmer
to execute the application code from within the debugger,
developing the code can be done using any tool.

The validity of the technique described in this paper has
been somewhat verified, in that we have an embryonic imple-
mentation of an interactive debugger, and an implementation
of a small subset of the communication protocol between the
application and the debugger. However, our current environ-
ment does not allow us to verify the ultimate performance of
application code run under the control of the debugger. We
firmly believe that the performance loss for code without any
breakpoints in it will be acceptable, and that the additional
cost when breakpoints are involved is to be expected by the
application programmer.

We have not yet implemented the two-version body idea
(See Section 4.1.) in SICL, mainly because the only imple-
mentation of SICL that currently works is the interpreter
for intermediate code. This interpreter was written for boot-
strapping purposes only and performance is not an issue. For
that reason, we have included only the debugging version of
function bodies.

In addition to producing a native version of the SICL sys-
tem, we also need additional work on the Clordane debugger,
and on the additional components of the communication
protocol between the debugger and the application.

We think it would be desirable for existing Common Lisp
implementations to incorporate the technique described in
this paper, so as to allow for a much more complete devel-
opment environment for users. However, we are convinced

ELS’20, April 27-28 2020, Ziirich, Switzerland

that the modifications that would be required to those im-
plementations would be prohibitive in terms of time invested
by maintainers. For that reason, we unfortunately do not
hold out much hope for this possibility, and we intend to
concentrate our efforts on making our technique work for the
SICL system.

8 ACKNOWLEDGMENTS

We would like to thank the following people for providing
information about breakpoints, tracing, and stepping in vari-
ous Common Lisp implementations: Martin Simmons (Lisp-
Works), Michat “phoe” Herda (CCL), Alex Wood (Clasp),
Daniel Kochmanski (ECL), Duane Rettig (Allegro).

We would like to thank Frode Fjeld for giving feedback
on early versions of this paper, and for suggesting the use of
multiple entry points for each function.

We would like to thank Michael Raskin for suggesting that
two versions of each function should be provided, thereby
making it unnecessary for the programmer to choose the level
of debugging.

REFERENCES

[1] INCITS 226-1994[S2008] Information Technology, Programming
Language, Common Lisp. American National Standards Institute,
1994.

[2] Bootstrapping Common Lisp using Common Lisp, April 2019.

Zenodo. doi: 10.5281/zenodo.2634314. URL https://doi.org/10.

5281/zenodo.2634314.

Burton H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Commun. ACM, 13(7):422-426, July 1970. ISSN

0001-0782. doi: 10.1145/362686.362692. URL https://doi.org/10.

1145/362686.362692.

Debra Cameron, James Elliott, Marc Loy, Eric S. Raymond, and

Bill Rosenblatt. Learning Gnu Emacs, Third Edition. O’Reilly

Media, Inc., 3 edition, 2004. ISBN 9780596006488.

D. Rettig. Instruction-Level Breakpoint Stepping in the Current

Process. Technical report, Franz Inc., Oakland, California, USA,

1999.

Richard Stallman. GNU Emacs Manual. GNU Press, Cambridge,

MA, USA, 2018.

Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging

with GDB. GNU Press, Cambridge, MA, USA, 2020. ISBN 978-0-

9831592-3-0.

3

[4

5

6

[7

Robert Strandh

https://doi.org/10.5281/zenodo.2634314
https://doi.org/10.5281/zenodo.2634314
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692

	Abstract
	1 Introduction
	2 Previous work
	2.1 Process-based debugging
	2.2 SBCL
	2.3 CCL
	2.4 ECL
	2.5 Clasp
	2.6 LispWorks
	2.7 Allegro

	3 Main features of the SICL system
	4 Our technique
	4.1 Two versions of every function body
	4.2 Communication between the debugger and the application
	4.3 Debugger commands available to the user

	5 Benefits of our technique
	5.1 Difference compared to UNIX-like systems
	5.2 Difference compared to most FLOSS Common Lisp systems

	6 Disadvantages of our technique
	7 Conclusions and future work
	8 Acknowledgments
	References

