
Resolving Metastability Issues During Bootstrapping

Robert Strandh
University of Bordeaux

351, Cours de la Libération
Talence, France

robert.strandh@u-bordeaux1.fr

ABSTRACT
The fact that CLOS is defined as a CLOS program in-
troduces two categories of issues that must be addressed,
namely bootstrapping issues and metastability issues [2]. Of
the two, the latter is the more difficult one, and also the one
that has the most negative impact on the elegance of the
code in that it requires base cases to be handled specially.

We describe satiation, a technique by which metastability
issues can be turned into bootstrapping issues, thereby sim-
plifying them and keeping the code elegant. Satiation con-
sists of pre-loading the call history of a generic function with
respect to a set of argument classes so that the base cases
are handled without invoking the full protocol for computing
the effective methods at runtime.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Run-time environments

General Terms
Algorithms, Languages

Keywords
CLOS, Common Lisp, Bootstrapping, Metastability

1. INTRODUCTION
While most Common Lisp implementations have their own
native CLOS implementation, PCL [1] is still used in some
high-performance implementations, notably SBCL. PCL was
written so that CLOS could be added to a pre-CLOS Com-
mon Lisp implementation such as the one defined in CLtL
[4] without too much effort. Even Common Lisp implemen-
tations that do not use PCL (such as ECL) include CLOS
late in the process of building a complete system.

SICL1 takes a different approach. With very few excep-

1https://github.com/robert-strandh/SICL

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ILC ’14, August 14 - 17 2014, Montreal, QC, Canada Copyright is held
by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-
4503-2931-6/14/08$15.00. http://dx.doi.org/10.1145/2635648.2635656

tions, SICL is written in entirely standard Common Lisp,
and it is designed to be bootstrapped using a conforming
Common Lisp implementation, which therefore includes a
complete implementation of CLOS. SICL takes advantage
of the conforming host by making extensive use of CLOS. In
particular, CLOS is bootstrapped first, using the host CLOS
implementation to break circularity in definitions.

The SICL implementation of CLOS is a truly metacircular
implementation in that very few compromises are necessary
because of bootstrapping or metastability issues.

Since CLOS is defined as a CLOS program, there are nec-
essarily metacircular issues that need to be resolved. The
AMOP [2] divides these issues into two families:

• Bootstrapping issues. The canonical example men-
tioned in the AMOP is that the class standard-class
is its own metaclass, so it must exist before it is cre-
ated.

• Metastability issues. Here, the canonical example is
the function compute-discriminating-function be-
ing invoked on itself as a result of a method being
added to it.

As mentioned in the AMOP, bootstrapping issues are rela-
tively easy to resolve, because there is only a relatively small
number of them, and they can be handled by writing special-
case code. So for instance, the class standard-class can be
defined “by hand” without using defclass.

Metastability issues are more difficult to handle because they
may require special cases to be handled at runtime so as to
avoid infinite computation.

Notice, however, that the canonical example for the metasta-
bility family issues is not a problem per se. Calling compute-

discriminating-function on itself is a problem only if the
existing discriminating function of compute-discriminating-
function is unable to compute the discriminating function
of a standard generic function2, and whether it can do so
depends on the structure of the code.

The technique described in this paper, satiation, guarantees

2compute-discriminating-function is a standard generic
function.

that existing discriminating functions of specified3 generic
functions can handle arguments of all specified classes.

2. PREVIOUS WORK
The AMOP [2] contains a section titled “Living with Cir-
cularity”, which describes the essential nature of the two
kinds of issues discussed here, namely bootstrapping issues
and metastability issues. That section does not contain a
complete list of all possible issues in any implementation of
CLOS, and probably could not contain such a list, since it
would depend on the exact organization of each particular
implementation.

The section in the AMOP has two subsections, one for boot-
strapping issues and one for metastability issues. The sub-
section on bootstrapping issues is more comprehensive.

2.1 Bootstrapping issues
The subsection in the AMOP on bootstrapping issues con-
tains two explicit issues.

The first one involves the class standard-class, which is
the metaclass of all standard classes, including itself. The
authors simply suggest creating this class manually.

The second issue involves the fact that generic functions are
required in order to create classes, but during bootstrap-
ping, there are no generic functions, since generic functions
are instances of classes. The technique used to handle such
issues is to define ordinary functions to contain code for es-
sential methods, so that such functions can be called during
bootstrapping. To avoid code duplication, the methods de-
fined later in the bootstrapping process simply call those
functions.

2.2 Metastability issues
The subsection in the AMOP on metastability issues also
contains two issues.

The first issue involves the function slot-value. As de-
scribed, the scenario does not correspond to the specifi-
cation, because the signature of the function slot-value-

using-class used in the scenario is different from its def-
inition in the specification. Either way, the basis of the
scenario is that slot-value on some instance would need
to access the list of slot descriptions of the class of the in-
stance, and that list is contained in a slot, so that a recursive
use of slot-value would be required on the class of the in-
stance. However, in a high-performance implementation, a
slot reader would not call slot-value. The reason is that
slot-value is much too general, so that unnecessary work
would be done. In particular, slot-value must find a slot
description metaobject with a particular name, whereas this
name is already known in the slot reader function. Instead,
in a high-performance implementation, the slot reader would
access the slot directly by location.4

3The term specified is used as in the AMOP to mean an
object (such as a class, a generic function, or a method)
that is defined by the HyperSpec or the AMOP.
4The situation is a bit more complicated due to the fact that
the location may vary according to the exact subclass of the
specializer of the reader method. In fact, it can even be

As described in the introduction of this paper, the second
issue has to do with compute-discriminating-function.
Again, the scenario described is an approximation of that
of a real high-performance implementation. Their example
involves adding a method to some generic function F, which
would trigger the computation of a new discriminating func-
tion for F. The metastability issue occurs when F happens
to be the function compute-discriminating-function. In
that case, compute-discriminating-function would be called
with itself as an argument, in which case, according to the
AMOP, “the game would of course be over.” Even in a naive
implementation without effective-method caching, the sce-
nario would be more complicated than that. In such an
implementation, compute-discriminating-function would
call compute-applicable-methods-using-classes5 and then
the function compute-effective-method. In an implemen-
tation without caching, the real metastability issue occurs
in these last two functions. When one of these functions
is called, the discriminating function will be invoked, and
therefore they will be called recursively.

In a high-performance implementation, on the other hand,
what really happens depends on the contents of the cache. If
the cache contains an entry that applies to instances of the
class standard-generic-function, then no metastability is-
sue is present. In such an implementation, the issue occurs
only in the initial stages where the cache is empty, and after
the cache has been flushed, should the implementation use
this technique.

3. OUR TECHNIQUE
The technique described in this paper was developed as part
of SICL.6 The system is written entirely in Common Lisp,
and it was designed to be bootstrapped from a conforming
Common Lisp implementation including CLOS. According
to Rhodes [3], few Common Lisp implementations are de-
signed to be bootstrapped this way. Instead, most imple-
mentations evolve by incremental modifications to an exist-
ing binary image.

A generic function in SICL contains a cache (a call history
in SICL terminology) which associates classes of required
arguments with corresponding effective methods, as specifi-
cally allowed by the AMOP. The discriminating function of
every standard generic function contains two parts: one part
computed from the call history and a second default part,
invoked when the first part fails. This second part of the dis-
criminating function invokes the complete machinery defined
by compute-applicable-methods-using-classes, compute-
applicable-methods, and compute-effective-method. Cru-
cially, the first part is a relatively simple mechanical trans-
lation from a set of call-history entries to an automaton that
implements the dispatch. This translation requires none of
the machinery for computing effective methods.

As hinted in the previous section, metastability issues can
be handled automatically, provided that:

the case that the slot has a different allocation in different
subclasses.
5We omit the possibility of the presence of eql specializers
in order to keep the description manageable.
6The SICL repository is public, and it is currently located
at https://github.com/robert-strandh/SICL.

• The call history contains entries for every combination
of classes of required arguments such that:

1. the classes are specified by the AMOP, and

2. there is at least one primary applicable method
for the combination.

• When the class hierarchy changes, an entry in the call
history is removed only if it involves a modified class.

• When a method is removed from a generic function
(possibly because it was replaced with a new one with
the same specializers), an entry in the call history is
removed only if it involves the method that was re-
moved.

The reason that these conditions automatically handle metasta-
bility issues is that the AMOP specifically disallows modi-
fications to specified classes. Then the first part of the dis-
criminating function (i.e., the part computed from the call
history) will always handle invocations where classes of re-
quired arguments are specified classes, including the func-
tion compute-discriminating-function.

Our technique, called satiation, makes sure that the condi-
tions are met by trying every combination of existing classes
as the required arguments of every existing generic function
in order to see whether this combination corresponds to an
applicable primary method of the generic function. If that
is the case, then a corresponding effective method is com-
puted, and an entry is added to the call history. Finally,
the resulting discriminating function is computed. Clearly,
these computations require a fully-functional machinery for
precisely the functions that are being processed.

While it may seem like overkill and an excessive amount of
work to compute call history entries for all possible combi-
nations, this work is justified because:

• The satiation machinery is invoked only during boot-
strapping, so it does not affect performance at runtime.

• When the machinery is invoked, only a handful of
classes and generic functions exist. Therefore, the to-
tal amount of work is fairly small.

While it may be possible to invoke the satiation machinery
lazily during bootstrapping,7 there is not much to gain by
doing that due to the limited amount of work involved. Fur-
thermore, it would still be necessary to make sure that the
call history of each specified generic function contains all en-
tries required to avoid metastability issues at runtime, and
that work is identical to what the full machinery is designed
to accomplish.

Now, in a system where CLOS must be bootstrapped from a
pre-CLOS implementation, satiation would require special-
ized code in the form of ordinary functions (as opposed to
generic functions) that do the same work as the specified

7It can not be invoked lazily at runtime, because then we
would be back in a situation with metastability issues.

generic functions on arguments that are instances of speci-
fied classes, with much duplicated code as a result.

An object in SICL is either an immediate object, a cons cell,
or a general instance. A general instance is represented as a
two-word header where the first word contains the class of
the instance, and the second word contains the rack. When
the instance is a standard object, the rack holds the values
of the slots of the instance. But general instances are also
used for instances of built-in classes, so (for example) an
instance of an array would have a rack that contains storage
for the elements of the array.

In SICL, we bootstrap CLOS on an existing conforming
Common Lisp implementation (the host) as follows:8

1. First we use the definitions of the MOP classes to cre-
ate ordinary host classes, albeit with names in a sepa-
rate package. Slots with associated accessors will gen-
erate ordinary host generic functions.

2. Next, we create bridge classes and bridge generic func-
tions. A bridge class is a host instance of one of the
host classes created in phase 1. A bridge generic func-
tion is an instance of the host class standard-generic-
function created in phase 1, but also of the host class
named funcallable-standard-object.9

3. Third, we use bridge classes and bridge generic func-
tions to create ersatz classes and ersatz generic func-
tions as instances of the bridge classes previously cre-
ated. These are target instances represented as a com-
bination of a host structure for the header, and a host
simple vector for the rack. At this stage the class slot
of the header of an ersatz object contains a bridge class.

4. The graph of ersatz objects is then tied by replacing
every bridge class in the class slots of every ersatz ob-
ject by its equivalent ersatz class, creating a complete
graph of only ersatz objects.

5. Finally, we traverse the graph of ersatz objects in order
to create an isomorphic graph as a sequence of bytes
to become the memory image of the target system.

In the vast majority of cases, the same definitions of func-
tions and classes is used to create host objects in phase 1,
bridge objects in phase 2, and ersatz objects in phase 3.

The discriminating function of each bridge generic function
is computed using the full machinery executing as a set of
host generic functions. This includes the satiation machin-
ery so that the call history of each bridge generic function

8The description of the bootstrapping procedure is simpli-
fied to avoid clutter. In reality, there are several complica-
tions that need to be taken care of.
9The class funcallable-standard-object is not part of the
Common Lisp standard. This is one of the few situations
where bootstrapping SICL requires some functionality that
is not part of the standard. We attempted to use the class
standard-generic-function instead, but a major problem
with that solution is the conflicting use of specified initial-
ization arguments which are interpreted both by the host
class and the bridge class.

is completely pre-computed. Similarly, the discriminating
function of each ersatz generic function is computed using
the full machinery executing as a set of bridge generic func-
tions.

The end result is a memory image containing all the generic
functions specified by the AMOP, and each of these generic
functions has the following characteristics:

• The call history contains pre-computed effective meth-
ods for all combinations of specified classes that result
in at least one primary applicable method.

• When a specified generic function F is invoked with
itself or some other specified generic function as an
argument, then the effective method for handling the
call already exists in the call history of F.

• Since the AMOP specifically disallows modifications
to specified classes after their initial definitions, call-
history entries involving specified classes will always
be valid.

• Call-history entries involving specified classes are not
removed as a result of methods being added or removed
in conformance with the AMOP, nor as a result of valid
modifications of existing classes.

• The call history is translated into a discriminating
function without invoking the machinery for comput-
ing effective methods.

This combination of characteristics guarantees the absence
of metastability issues at runtime.

4. CONCLUSIONS AND FUTURE WORK
We have described a technique that allows us to avoid metasta-
bility issues in the implementation of CLOS in our system
SICL by replacing those issues by simpler bootstrapping is-
sues. Furthermore, our technique also simplifies bootstrap-
ping by avoiding special cases due to the non-existence of
generic functions when the system is bootstrapped. To avoid
these issues, we use the host generic function machinery in
early stages of bootstrapping.

Currently, nothing prevents a specified method on a speci-
fied generic function, specializing on specified classes to be
modified or removed, and nothing prevents a specified class
from being redefined. Should this happen, “the game would
of course be over.” We imagine a mechanism that protects
the user from inadvertently invoking such operations. It
should probably be possible to toggle the mechanism so that
system code can make modifications known to be safe.

When this article was written, SICL was not yet finished, nor
even in a state to be executed standalone. However, most of
the difficult components (such as the compiler, the garbage
collector, and of course CLOS) were in a fairly advanced
stage of development. The final verdict on the technique for
bootstrapping the system can not be determined until the
system is able to run standalone.

5. REFERENCES
[1] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter,

M. Stefik, and F. Zdybel. Commonloops: Merging lisp
and object-oriented programming. In Conference
Proceedings on Object-oriented Programming Systems,
Languages and Applications, OOPLSA ’86, pages
17–29, New York, NY, USA, 1986. ACM.

[2] G. Kiczales and J. D. Rivieres. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, USA,
1991.

[3] C. Rhodes. Self-sustaining systems. chapter SBCL: A
Sanely-Bootstrappable Common Lisp, pages 74–86.
Springer-Verlag, Berlin, Heidelberg, 2008.

[4] G. L. Steele. COMMON LISP: the language. 1984.
With contributions by Scott E. Fahlman and Richard
P. Gabriel and David A. Moon and Daniel L. Weinreb.

