Representing method combinations

Robert Strandh

robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux
Talence, France

ABSTRACT

The Common Lisp standard has few requirements on method
combinations, and so does the semi-standard metaobject
protocol for Common Lisp. For that reason, there is great va-
riety among different Common Lisp implementations regard-
ing how method combinations are represented and handled.
Some implementations allocate a new method-combination
instance for each generic function, whereas others attempt
to reuse existing instances as much as possible. Most im-
plementations are able to verify the validity of method-
combination options for the built-in method-combination
types, but no free Common Lisp implementation can verify
custom method-combination types using the long form of
the macro define-methodcombination immediately when a
generic function is created, nor when a method-combination
type is redefined. Instead, incompatibilities between supplied
options and the method-combination type are then veri-
fied only when an attempt is made to execute the resulting
method-combination procedure in order to create an effective
method.

We propose a technique that makes early detection of
incompatible method-combination options possible even for
custom long-form method-combination types. We augment
the lambda list of the method-combination definition with
&aux entries that verify restrictions, and we construct a func-
tion with the augmented lambda list that will fail whenever
there is such an incompatibility. With this technique, when
an incompatibility is detected, we are also able to signal more
relevant errors than most existing free implementations are
able to do.

CCS CONCEPTS

e Software and its engineering — Incremental com-
pilers; Runtime environments;

KEYWORDS
Common Lisp, CLOS, Meta-Object Protocol, Method com-
binations

ACM Reference Format:
Robert Strandh. 2021. Representing method combinations. In
Proceedings of the 18th European Lisp Symposium (ELS’20). ACM,

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ELS’20, April 27-28 2020, Zirich, Switzerland

© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.3747553

New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.
3747553

1 INTRODUCTION

The Common Lisp standard [1] contains very little informa-
tion about method combinations. The dictionary entry in the
standard for the system class method-combination requires
a method combination object to be an indirect instance of
the system class named method-combination. The standard
further requires such an object to contain information both
about the type of method combination and the arguments
used with that type.

The term indirect instance, as explained in the glossary, ex-
cludes the possibility of such a method combination object to
be an immediate instance of the class method-combination.
‘We can interpret this requirement as the need to create a sub-
class, say, standard-method-combination to parallel the situ-
ation for method vs standard-method and generic-function
vs standard-generic-function, i.e., so as to allow the pro-
grammer to create very different objects from those that the
standard- version can provide.

Clearly, the text of the dictionary entry means that when
the macro defgeneric is used with the :method-combination
option given, such a method combination object is what
the generic function will contain. We can confirm this view
by examining the description of the MOP generic func-
tion generic-function-method-combination (as described
in [2]) which states that the return value is “a method com-
bination metaobject”.

However, the macro define-method-combination does
not define a method combination object. The reason is of
course that no method-combination options are supplied to
this macro. The dictionary entry for this macro also clearly
says that the macro is used to define new types of method
combinations.

The main issue for the person implementing a Common
Lisp system, then, is how to interpret the relation between a
method combination type and a method combination object.

It is easy to draw the conclusion that a call to the macro
define-method-combination creates a new class, as sug-
gested by the use of the word type in the standard, and
that method combination objects of that type are instances
of the new class. However, this view creates several prob-
lems. In particular, one must then determine whether each
use of the same combination of the type and the argu-
ments in the :method-combination option to defgeneric
creates a new instance of the class, or whether existing in-
stances are somehow kept track of and reused. The first
possibility would have the unfortunate consequence that two

https://doi.org/10.5281/zenodo.3747553
https://doi.org/10.5281/zenodo.3747553
https://doi.org/10.5281/zenodo.3747553

ELS’20, April 27-28 2020, Ziirich, Switzerland

-

standard-
object
method-
metaobject combination-
template
NS,
N ~.
N ~
methOd_ \\
combination \X~"

C})
, N
’

standard-

W :most— =
method—- |<--4 specific- {7
combination N first
N

» :most— L
specific—
last

———= subclass of |:| class

---> instance of
> object reference C) instance

-

Figure 1: Representation of method combinations.

calls to generic-function-method-combination with differ-
ent generic-function metaobjects would return two method
combination objects that are not identical.

In this paper, we argue that a method combination type
is itself an instance of a completely different class that we
shall call method-combination-template, and that a method
combination object is a wvariant of the template in that it
contains a reference to the template as well as the val-
ues of the options that this particular method combina-
tion type allows. To conform to the standard, we obviously
maintain that method combination objects are instances
of standard-method-combination. This idea is illustrated
in Figure 1, which shows two method combination tem-
plates (standard and and) and two variants of the and
method-combination template; one variant with the option
:most-specific-first and another variant with the option
:most-specific-last.

A call to the macro define-method-combination results
in a function that can be applied to a list of arguments which
include at least a generic function and a list of applicable
methods. This function becomes associated with the name
of the method-combination type thus defined. The standard
briefly uses the term procedure to refer to this resulting
function. We adopt that convention in this paper, and refer
to the resulting function as the method-combination procedure.

When a generic function is defined or redefined, it would
be desirable to have the options of the :method-combination
defgeneric option checked for validity immediately when
the definition or redefinition occurs. For the built-in method
combination types, most implementations also handle this

Robert Strandh

check as a special case. However, all implementations we have
investigated fail to check the options to a user-defined method-
combination type defined by the long form of the macro
define-method-combination. Instead, if the options are in-
compatible with the defined method-combination type, in the
best case, an error is signaled when the method-combination
procedure is applied to a list of applicable methods by the
generic function compute-effective-method. Furthermore,
the error being signaled can be hard to decipher, as it typ-
ically results from invalid arguments to a function with a
particular lambda list.

In this paper, we propose a general mechanism for early
detection of incompatible options to a particular method-
combination type. This mechanism is available to the creator
of custom method-combination types, and also used to verify
the options to the built-in method-combination types.

The macro define-method-combination comes in two ver-
sions called the long form and the short form in the Common
Lisp standard. The short form of the macro can be expressed
in terms of the long form, but it may not be obvious how the
options to the short form should be propagated to the long
form.

Furthermore, in the description of the short form of the
macro, the standard states that the method-combination
procedure resulting from such a definition accepts an op-
tional argument (named order) that can have two values,
:most-specific-first and :most-specific-last, with the
value :most-specific-first being the default. It is not ob-
vious how this restriction can be expressed as a long-form
definition of a similar procedure. A common solution to this
problem is to define a subclass short-method-combination
of the class method-combination, and to introduce special-
purpose code for checking this restriction. The technique
presented in this paper does not require such a subclass, as
the long-form version of the short-form definition is able to
check the restriction.

Throughout this paper, we assume that it is an error
to attempt to create a generic function using a method-
combination type that is not already created. Recall that the
standard states that when a define-method-combination
form appears at the top level, the compiler must recognize the
name of that type as valid in subsequent defgeneric forms,
but that the resulting method-combination procedure is not
executed until the define-method-combination form itself
is executed. In other words, since the method-combination
type is not created at compile time, it may not exist when
a defgeneric form using the name is encountered by the
compiler. However, our assumption is still valid, since the
compiler also does not create the generic function when a
defgeneric form appears at the top level.

For example, assume that some source file contains a
define-method-combination form, defining a method com-
bination type with a new name, followed by a defgeneric
form that refers to that method combination type in the
:method-combination option of the :defgeneric form. When
the compiler encounters the define-method-combination

Representing method combinations

form, it registers its name as being valid for use in subse-
quent defgeneric forms, but the compiler does not create the
method-combination type. Subsequently, when the compiler
encounters the defgeneric form, it recognizes a valid name of
a method-combination type, but since the compiler also does
not create the generic function when the defgeneric form
is encountered, there is no need for the method-combination
type to have been created. When the compiled file is later
loaded, the new method-combination type is first created.
Subsequently, the generic function is created, referring to an
existing method-combination type. In this paper, we do not
address the mechanism by which the compile-time behavior
required by the standard is implemented.

There are several scenarios that are discussed in this paper:

(1) The user correctly defines a custom method-combination
type using def ine-method-combination. Subsequently,
the user defines a generic function with that method-
combination type, but makes a mistake in the list of
options.

(2) The user defines a custom method-combination type
using the long form of define-method-combination,
but makes a mistake in the lambda list supplied to the
macro, so that the options of the resulting method-
combination procedure are not the ones that were
intended. Subsequently, the user defines a generic func-
tion with a list of options that were intended to be
acceptable.

(3) The user initially correctly defines a custom method
combination type using define-method-combination,
and then also correctly defines one or more generic
functions with that method combination type. Then
the user decides to make a change to the code of
the method-combination type, so the define-method-
combination form is re-executed, but the new lambda
list is incompatible with the options given when the
generic functions were created, either as a result of a
mistake or of a deliberate decision.

To illustrate these scenarios, we can imagine a restricted
form of the and method combination that does not admit
any :around methods. This restriction means that the short
form of define-method-combination can not be used.
An example of the first scenario would be the following

code:
(define-method-combination simple-and

(&optional (order :most-specific-first))

(primary (and) :order order :required t)

)

(defgeneric simple-and (...)

(:method-combination simple-and :msot-specific-first))
Here, the user has a typo in the second form. An example of
the second scenario would be the following code:
(define-method-combination simple-and

(&optional (order :msot-specific-first))
(primary (and) :order order :required t)

)

ELS'20, April 27-28 2020, Ziirich, Switzerland

(defgeneric simple-and (...)
(:method-combination simple-and :most-specific-first))

Here, the user has a typo in the first form. Finally, an example
of the third form would be the following code:

(define-method-combination simple-and
(&optional (order :most-specific-first))
(primary (and) :order order :required t)

L)

(defgeneric simple-and (...)
(:method-combination simple-and :most-specific-first))

Here, there are no mistakes, but the user later decides to
disallow the option , so the first form is altered to become:

(define-method-combination simple-and ()
(primary (and) :order :most-specific-first
:required t)

)

In the first two scenarios, the ideal consequence would be
that a warning is initially signaled, stating that the options
supplied to the creation of the generic function are incompat-
ible with the type of the desired method combination. Any
subsequent attempt to execute the generic function would
result in an appropriate error being signaled. Once the in-
correct definition has been corrected and the corresponding
form has been re-executed, the generic function should be
operational.

In the third scenario, the ideal consequence would be that
a warning is signaled, giving a list of generic functions with
a list of options that are now incompatible with the rede-
fined method-combination type. Any subsequent attempt to
execute one of these generic functions would result in an ap-
propriate error being signaled. If a mistake was made, the re-
execution of a corrected define-method-combination form
should render the existing generic functions operational again.
If the change was deliberate, the list of generic functions in
the message can be used to determine which definitions to
correct and re-execute.

The technique described in this paper handles all these
scenarios, but it has been implemented only partially. We are
currently working on incorporating the remaining elements
of our technique into the SICL' code base.

2 PREVIOUS WORK

In this section, we give an overview of how different free
Common Lisp implementations represent and handle method
combinations. In particular, we compare the technique that
each implementation uses with the three scenarios specified
in Section 1. We do not include commercial Common Lisp
implementations, simply because we can not know in detail
how the code is written. Extensive experimentation might
have given sufficient clues, but we prefer to limit ourselves
to implementation where we can examine the source code.

Lhttps://github.com/robert-strandh /SICL

ELS’20, April 27-28 2020, Ziirich, Switzerland

2.1 PCL

Portable Common Loops?, PCL for short, is a library that
implements the functions defined in the book “The Art of
the Metaobject Protocol” [2], and is meant as an add-on to
pre-standard Common Lisp implementations, i.e., implemen-
tations without CLOS.

Most Common Lisp implementations that exist today were
initially written before the standard was published, and many
of those implementations chose to use PCL to incorporate
CLOS functionality, though frequently, the code has since
been adapted for each specific implementation. Much of the
analysis in this section was also described in [4], although the
description in that paper refers to the way SBCL handled
method combinations at the time that article was written.

PCL unsurprisingly defines the class method-combination
and then the class standard-method-combination as a sub-
class of the class named method-combination.

More surprisingly, it then defines two subclasses of the
class standard-method-combination, namely long-method-
combination and short-method-combination, each for use
with the different forms (long and short) of the macro define-
method-combination.

The class standard-method-combination contains slots
for the method-combination type (i.e., a symbol), and the
method-combination options.

The class short-method-combination adds two more slots:
namely, the operator and a Boolean that indicates whether
the operator, when given a single argument, is the identity
function.

The short form of define-method-combination adds a
method to the generic function find-method-combination.
The second parameter of this method has an eql specializer
with the name of the method-combination type being defined.
The method function of this method first checks that the
options given are valid for the short form of define-method-
combination, and then it creates a fresh instance of the class
short-method-combination. In other words, a fresh method
combination is created whenever find-method-combination
is called, which is typically whenever a generic function is
created. As a result, with a method-combination type defined
by the short form, the method combination of a generic
function using this type is not updated as a result of redefining
that method-combination type, which is undesirable.

Furthermore, compute-effective-method has a method
specialized to the class short-method-combination that han-
dles the case of the short method combination as a special
case.

The long form of define-method-combination turns the
body of the form into a method-combination procedure. This
procedure has the same lambda list as compute-effective-
method. The expansion of the macro stores this procedure
in a global hash table, using the method-combination type
as a key. There is a slot for this procedure in the class
long-method-combination, but this slot is not used.

Zhttps:/ /www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/lang/lisp/oop/clos/pcl/0.html

Robert Strandh

Like the short form, the long form also creates a method on
find-method-combination, also with an eql specializer for
the second parameter. This method simply creates an instance
of the class long-method-combination. The generic function
compute-effective-method has a method specialized to the
class long-method-combination. This method consults the
hash table to find the method-combination procedure and
applies that procedure to the generic function, the method
combination, and the applicable methods.

Appendix B of [4] shows some very strange consequences of
the use of the global hash table, combined with the fact that
the effective-method caches of existing generic functions are
not flushed when the method-combination type is redefined
by the long form. A generic function may well end up with
some effective methods computed before the redefinition and
some computed after it. Needless to say, this behavior is very
undesirable.

In summary then, the generic function named find-method-
combination acts as a container for method-combination
types, encoded as eql-specialized methods. Furthermore,
there is no attempt to reuse existing method combinations.
A new one is created whenever find-method-combination is
called. Finally, while the validity of the options is verified for
the built-in method combination types, no such verification
is done for custom method-combination types defined by the
long form of define-method-combination.

2.2 SBCL

The SBCL?® Common Lisp implementation uses a heavily
modified version of PCL (See Section 2.1). Prior to April
of 2018, SBCL used the unmodified technique from PCL
as described in section 2.1. The technique described in this
section is a result of significant modifications to the code for
handling method combinations. The article by Didier Verna
[4] published at ELS in April of 2018 contained a detailed
description of the technique used by SBCL at that time. The
improvements to SBCL were likely a result of the descriptions
in that article.

One aspect of the SBCL code that remains from the previ-
ous version is that the two subclasses of method-combination
are still present.

An invocation of define-method-combination does not
create any new class. Instead, an info structure is created,
and stored in a hash table that uses the name of the method-
combination type as a key. This info structure contains a
cache, which is an association list. The key of an element of the
association list is a list of options for the method combination,
and the value of an element is the method-combination object.
Initially, the cache is empty, except for the info structure
associated with the standard method combination.

The function find-method-combination is given the name
of the method combination and the desired options. It looks
up the appropriate info structure, and searches the cache for
an element corresponding to the options. If such an element
is found, the method-combination object is returned. If no

Shttp://www.sbcl.org/

Representing method combinations

element is found, a new one is constructed, pushed on the
cache, and returned. The new element is constructed by cons-
ing the list of options and the result of applying a constructor
function to the list of options. This constructor function is
stored in a slot in the info structure. As a result, existing
method-combination instances are reused whenever possible.

When a generic function is defined with one of the built-in
method combinations, or with a method combination defined
using the short form, SBCL will check that the options given
to the :method-combination defgeneric option are valid.
This verification is done by special-purpose code. However,
with a user-defined method combination using the long form,
no verification is done. It is only when an attempt is made
to invoke the generic function that the method-combination
procedure is invoked, and the incompatible lambda lists are
detected. Furthermore, the error message is very general and
can be difficult to decipher by the programmer.

SBCL handles reevaluation of define-method-combination
forms with the name of an existing info entry in the hash
table. Every method-combination instance contains a list
of back pointers to generic functions that use this method
combination. The cache of the existing info entry is traversed,
and for each method combination, the effective methods of its
generic functions are invalidated. The problems indicated in
Appendix B of [4] therefore no longer exist in recent versions
of SBCL. When the method-combination type is redefined
with a different form of define-method-combination, SBCL
correctly changes the class of the method-combinations of the
type in question, but it fails to verify that the existing options
are compatible with the new definition, even when the redefini-
tion is using the short form of define-method-combination.
The reason for this failure is that the options are verified
only as a result of a call to find-method-combination, and
this function is not called when a method-combination type
is redefined.

2.3 Clozure Common Lisp

The Clozure Common Lisp? implementation (CCL for short)
defines the class method-combination and then three sub-
classes of that class:

e standard-method-combination with a single instance,
namely the standard method combination. This class
is used as a specializer in a method on the generic
function compute-effective-method so as to handle
the standard method combination as a special case.

e short-method-combination which is used for method
combinations defined by the short form of the macro
define-method-combination.

e long-method-combination which is used for method
combinations defined by the long form of the macro
define-method-combination.

The class standard-method-combination in CCL thus
does not play the role of a general instantiable subclass
of method-combination.

4https://ccl.clozure.com/

ELS'20, April 27-28 2020, Ziirich, Switzerland

The generic function compute-effective-method has a
method specialized to each of these subclasses. The method
specialized to standard-method-combination uses special-
purpose code in order to achieve the effect of the standard
method combination. The standard method combination is
thus not defined using define-method-combination. Simi-
larly, the method specialized to short-method-combination
uses special purpose code. Only the method specialized to
long-method-combination invokes the method-combination
procedure to achieve the desired effect.

In CCL, the macro define-method-combination does not
define a method combination class. Instead it defines an info
vector (disguised as a structure) that acts as a template for
creating method combinations later. The info vector contains
the following elements:

e The name of the method-combination class to be cre-
ated which is either short-method-combination or
long-method-combination.

e An element that contains the short-form options if
the info vector was created as a result of the short
form of define-method-combination, and the method-
combination procedure (called the expander function
in CCL) if the info vector was created as a result of
the long form.

e A list of instances, i.e., method-combination objects
that share the same info vector.

e A list of generic functions using method combinations
of the type defined by the info vector.

This information is used in order to invalidate effective-
method caches when a method-combination type is redefined.
Therefore, CCL does not have the problem that PCL does,
described in Section 2.1.

When a long method-combination type is redefined us-
ing the short form of define-method-combination, every
generic function having a method combination of that type
is accessed, and the method-combination options are checked
so that they are valid for the short method combination, i.e.,
either there are no explicit options or the options consist
of a singleton list containing either :most-specific-first
or :most-specific-last. No analogous verification is made
when a short method-combination type is redefined using the
long form. However, in both cases, the method combination
with the redefined type is passed to change-class, thereby
making the redefinition effective in all generic functions with
a method combination of that type.

2.4 ECL

The ECL® Common Lisp implementation defines the class
method-combination, and method-combination metaobjects
are direct instances of this class. Thus, in this respect, ECL
is not conforming.

Unlike PCL, SBCL, and CCL, ECL does not define any sub-
classes of the instantiable class. Method-combination types
defined by the short form are rewritten to the equivalent long
form.

Shttps://common-lisp.net /project /ecl/

ELS’20, April 27-28 2020, Ziirich, Switzerland

The macro define-method-combination does not define
a new method-combination class. Instead it defines a method-
combination procedure. This procedure computes the effec-
tive method of a generic function. The lambda list of the
method-combination procedure consists of two required pa-
rameters: namely, a generic function and a list of applicable
methods, followed by the lambda list given to define-method-
combination. For most built-in method-combination types,
that lambda list will contain an optional parameter named
order with a default value of :most-specific-first. The
resulting method-combination procedure is stored in a hash
table with the name of the method-combination type as a
key.

When a generic function is created, a new instance of
the method-combination class is created. The new instance
contains the method-combination procedure and a list of
the options given after the method-combination name in the
:method-combination option to defgeneric.

Redefining a method-combination type does not have any
effect on existing generic functions having a method com-
bination of that type. The hash table containing method-
combination procedures is updated, but this update does not
affect existing generic functions.

The standard method combination is not defined using the
macro define-method-combination. Instead, it is defined
using special-purpose code.

Incompatibilities between method-combination options
given to find-method-combination and the lambda list of
the method-combination procedure are detected when an
effective method needs to be computed. Because there is no
specific class for method combinations defined by the short
form, this behavior is true also for method-combination types
defined by the short form.

Because the short form is rewritten into the long form, and
the body of the resulting form contains no verification that the
option is either :most-specific-first or :most-specific-
last, it is possible to give any object as an option to find-
method-combination. Any object different from the keyword
:most-specific-last will make the resulting method com-
bination behave as if :most-specific-first had been given.
We argue that this behavior is not conforming, since the de-
scription of the short form of define-method-combination
states that this form “automatically includes error checking”.

2.5 Clasp

Clasp [3] is a Common Lisp implementation based on ECL
(See Section 2.4), although all the C code in ECL was rewrit-
ten in C++.

A large part of the Common Lisp code in Clasp is identical
or near-identical to the corresponding code in ECL, and that
includes the code for handling method combinations. As a
result, Clasp handles method combinations in exactly the
same way as ECL.

Robert Strandh

3 OUR TECHNIQUE

3.1 Representation of method
combinations

We introduce a class named method-combination-template.
An instance of this class represents all method combinations
with the same name, independent of the options. There is a
template for standard, a template for and, etc. Furthermore,
in order to respect the restriction required by the standard,
we introduce a class standard-method-combination which is
a subclass of method-combination. All method-combination
metaobjects are direct instances of this subclass. There are
no subclasses of standard-method-combination, neither for
specific method-combination types, nor for distinguishing
between method combinations defined by the long and the
short form of define-method-combination. In other words,
a method combination is a variant of a method-combination
template. The template contains a list of all its variants in
use.

A method-combination instance contains the following
slots:

e A reference to its template.

e The list of method-combination options to be given to
find-method-combination, and that typically appear
after the method-combination name of the :method-
combination defgeneric option.

e The method-combination procedure. This procedure
has two parameters, both required. The first parameter
is a generic function for which an effective method is to
be computed. The second parameter is a list of pairs.
Each pair contains an applicable method, and a list
of method qualifiers for that method. The result of
applying the method-combination procedure is a form
called the effective method. Notice that the method-
combination procedure does not have the method-
combination options in its lambda list.

e A list of generic functions that contain this method
combination.

3.2 When find-method-combination is
called

The expansion of the defgeneric macro contains a call
to the ordinary function ensure-generic-function. If the
:method-combination option is explicitly supplied to the call
to defgeneric, then the call to ensure-generic-function
contains an explicit keyword argument :method-combination
with the value form being a call to the generic function
find-method-combination with the generic function, the
name of the method-combination type, and the options. If
no :method-combination option is given in the defgeneric
form, the :method-combination keyword argument to the
call to ensure-generic-function is not supplied.

The call to find-method-combination either returns an
existing method-combination instance corresponding to the
type and the options given, or it creates and stores a new such

Representing method combinations

instance. If the options are incompatible with the method-
combination template, a warning is signaled, and the method-
combination procedure is one that signals an error if invoked.
The mechanism for detecting this incompatibility is described
later in this section.

A call to ensure-generic-function results in a call to
ensure-generic-function-using-class where the first ar-
gument is either an existing generic function or nil if no
generic function with the given name exists. The method on
ensure-generic-function-using-class specialized to the
class null supplies the standard method-combination as
a default value of the :method-combination when calling
make-instance to create a new generic function.

To detect whether a list of method-combination options are
invalid for a particular method-combination template, we ana-
lyze the lambda-list given in the long form of define-method-
combination. The analysis consists of extracting all parame-
ters that can be referenced in the method-combination pro-
cedure. We then construct a lambda expression as follows:

(lambda (...)
(list v1 v2 ... vn))

which is then compiled so that a function is obtained. The
lambda list of this function is the lambda list that appears
in the define-method-combination form and vi1, v2, ..., vn
are the lexical variables resulting from our analysis of the
lambda list. Applying this function to the options given to the
find-method-combination function returns a list of objects.
The lambda list typically contains &aux lambda list keywords,
with forms that check the validity of the options supplied,
and signal an error whenever an invalid option combination
is detected. Thus, if either the lambda list is incompatible
with the options given, or one of these &aux forms detects an
invalid option combination, an error is signaled. We handle
this error, turn it into a warning, and return a method-
combination instance with a method-combination procedure
that signals an error whenever invoked.

This technique for detecting incompatible or invalid op-
tions handles the first scenario described in Section 1. When
the user corrects the incorrect form that created or reinitial-
ized the generic function (typically a defgeneric form), the
validation process is re-invoked and a method-combination
with a viable method-combination procedure is assigned to
the generic function. This technique also detects the second
scenario described in Section 1. The way the user can correct
the situation in this scenario is described below.

When the options given to find-method-combination are
compatible and valid, a viable method-combination procedure
is constructed as follows:

(lambda (generic-function method-qualifier-pairs)

(Qet ((v1 ...) (v2 ...) (vn ...))
<body>))
where v1, v2, ..., vn are again the lexical variables resulting

from our analysis of the lambda list. The initialization forms
for the variables are the values returned in the resulting list
of our analysis function.

ELS'20, April 27-28 2020, Ziirich, Switzerland

3.3 Redefining a method-combination
type

When a define-method-combination form is re-evaluated,
we locate the corresponding method-combination template.
We then invoke the same analysis as before to every vari-
ant, i.e., to every existing method combination having this
type name. If an analysis fails, we then signal a warning
containing all generic functions using the now invalid method-
combination, and we set the method-combination procedure
of the invalid method combination to one that will signal an
error when invoked. If the analysis succeeds, then the corre-
sponding method combination is assigned a viable method-
combination procedure.

3.4 Expanding the short form to the long
form

As mentioned in Section 1, it is not obvious how to transform
the short form of define-method-combination into the long
form. Recall that the syntax of the short form is:

(define-method-combination name [[short-form-options]])
where a short-form-option can be:

e :documentation documentation

e :identity-with-one-argument
identity-with-one-argument

e :operator operator

Here, documentation is a string that is not evaluated. When
the short form gets turned into the long form, it becomes an
ordinary documentation string, preceding the forms of the
body of the long form.

To illustrate where the remaining options end up in the
long form, recall the following example from the dictionary
entry for define-method-combination, where both the short
form and the long form are used to define the built-in method-
combination and. We have changed only the layout of the
code so that it will fit on the page.

The short form is:
(define-method-combination and
:identity-with-one-argument t)
The long form is;
(define-method-combination and
(&optional (order :most-specific-first))
((around (:around))
(primary (and) :order order :required t))
(let ((form (if (rest primary)
‘(and ,@(mapcar
#’ (lambda (method)
“(call-method ,method))
primary))
‘(call-method ,(first primary)))))
(if around
‘(call-method ,(first around)
(,@(rest around)
(make-method ,form)))
form)))
The option identity-with-one-argument is responsible for the
form:

ELS’20, April 27-28 2020, Ziirich, Switzerland

(if (rest primary)
‘(and ,@(mapcar
#’ (lambda (method)
‘(call-method ,method))
primary))
‘(call-method ,(first primary)))))
Had this option been nil or not present, the corresponding
form would have looked like this instead:
‘(and ,@(mapcar
#’ (lambda (method)
‘(call-method ,method))
primary))
In order for our technique to work for the short form, when
we express the short form in terms of the long form, we
modify the lambda list of the long form compared to the
example above as follows:
(&optional (order :most-specific-first)
&aux (ignore (unless (member order
> (:most-specific-first
:most-specific-last))
M)
Now, any attempt to call a function with this lambda list
with a number of arguments other than exactly 1, or with
one argument that is neither :most-specific-first nor
:most-specific-last will fail.

(error ..

4 CONCLUSIONS AND FUTURE
WORK

We define a subclass standard-method-combination of the
specified class method-combination. Method combinations
created from a method-combination type defined by the
macro define-method-combination are all instances of this
subclass.

Our technique allows for early detection of mismatches be-
tween the method-combination options given when a method
combination is created as a result of calling find-method-
combination and the lambda list given to the invocation of
define-method-combination. We detect such mismatches
when a new method combination is created, but also when
a method-combination type is redefined with a modified in-
vocation of define-method-combination using the name of
an existing method-combination type.

Furthermore, while a mismatch exists, our technique results
in an error being signaled whenever an attempt is made to
use the faulty method combination in order to create an
effective method.

Future work includes incorporating our technique into
the SICL code base. The technique described in this paper
was developed after our initial implementation of method
combinations in SICL. (Hence, this technique was not in
SICL from the start.) Currently, SICL does not have any data
structure allowing weak references, but such references would
be desirable for the back pointer from a method combination
to the generic functions using it. Otherwise, a memory leak
would result from using fmakunbound or some other operator
that makes the back pointer be the only reference to the
generic function. In general, it is impossible to have such

Robert Strandh

operators remove the back pointer, since there could be any
number of references to the generic function in question.

5 ACKNOWLEDGMENTS

We would like to thank Yan Gajdo$ and Cyrus Harmon for
providing valuable feedback on early versions of this paper.

REFERENCES

[1] INCITS 226-1994[S2008] Information Technology, Programming
Language, Common Lisp. American National Standards Institute,
1994.

Gregor Kiczales and Jim Des Rivieres. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, USA, 1991. ISBN
0262111586

[3] CE Schafmeister. Clasp~-A Common Lisp that Interoperates with
C++4 and Uses the LLVM Backend. In Proceedings of the 8th
European Lisp Symposium, pages 90—91, New York, NY, USA,
2015. ACM.

Didier Verna. Method combinators. In 11th European Lisp Sym-
posium, Marbella, Spain, April 2018. ISBN 9782955747421. doi:
10.5281/zenodo.3247610.

2

=

	Abstract
	1 Introduction
	2 Previous work
	2.1 PCL
	2.2 SBCL
	2.3 Clozure Common Lisp
	2.4 ECL
	2.5 Clasp

	3 Our technique
	3.1 Representation of method combinations
	3.2 When find-method-combination is called
	3.3 Redefining a method-combination type
	3.4 Expanding the short form to the long form

	4 Conclusions and future work
	5 Acknowledgments
	References

