
make-method-lambda revisited

Irène Durand
Robert Strandh

irene.durand@u-bordeaux.fr
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT

The Common Lisp metaobject protocol specifies a generic
function named make-method-lambda to be called at macro-
expansion time of the macro defmethod. In an article by
Costanza and Herzeel, a number of problems with this generic
function are discussed, and a solution is proposed.

In this paper, we show that the alleged problems are due to
the fact that existing implementations do not include proper
compile-time processing of the associated macro defgeneric,
and that with proper compile-time processing, the problems
indicated in the paper by Costanza and Herzeel simply vanish.

The main characteristic of our proposed solution is for
the compile-time side effects of defgeneric to include saving
the name of the method class given as an option to that
macro call. With this additional information, no difference
exists between the behavior of direct evaluation and that of
file compilation of a defgeneric form and a defmethod form
mentioning the same name of the generic function.

CCS CONCEPTS

� Software and its engineering�Abstraction, model-
ing and modularity; Software performance; Compil-
ers;

KEYWORDS

Common Lisp, Meta-Object Protocol

ACM Reference Format:
Irène Durand and Robert Strandh. 2021. make-method-lambda

revisited. In Proceedings of the 12th European Lisp Symposium

(ELS’19). ACM, New York, NY, USA, 5 pages. https://doi.org/

10.5281/zenodo.2634303

1 INTRODUCTION

In the definition of the Common Lisp [1] metaobject protocol
in the book by Kiczales et al [3] (also known as the AMOP),
the generic function make-method-lambda plays a role that
is very different from most of the other generic functions that
are part of the metaobject protocol.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’19, April 01–02 2019, Genova, Italy

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2634303

According to the book, the function has four parameters,
all required:

(1) A generic function metaobject.
(2) A (possibly uninitialized) method metaobject.
(3) A lambda expression.
(4) An environment object.

The main difference between make-method-lambda and
other generic functions defined by the metaobject protocol
is that make-method-lambda is called as part of the expan-
sion code for the defmethod macro, whereas other generic
functions are called at execution time.

The AMOP book states that the generic function passed
as the first argument may be different from the one that the
method is ultimately going to be added to. This possibility
seems to exist to handle the situation where a defgeneric

form is followed by a defmethod form in the same file. In this
situation, the Common Lisp standard clearly states that the
file compiler does not create the generic function at compile
time. Therefore, when the corresponding defmethod form
is expanded (and therefore make-method-lambda is called),
the generic function does not yet exist. It will be created
only when the compiled file is loaded into the Common Lisp
system.

The AMOP book also states that the method object passed
as second argument may be uninitialized, suggesting that the
class prototype of the method class to be instantiated may
be passed as the second argument.

The third argument is a lambda expression corresponding
to the body of the defmethod form. The purpose of make-

-method-lambda is to wrap this lambda expression in another
lambda expression called the method lambda which is ulti-
mately compiled in order to yield the method function.

The default method lambda returned by an invocation of
make-method-lambda is a lambda expression with two param-
eters. The first parameter is a list of all the arguments to the
generic function. The second parameter is a list of next meth-
ods that can be invoked using call-next-method from the
body of the method. Therefore make-method-lambda also pro-
vides definitions of call-next-method and next-method-p

that are lexically inside the lambda expression it returns.
It is important that the method lambda is returned as

part of the expansion of the defmethod macro and that it
is then processed in the same environment as that of the
defmethod form itself, so that when the defmethod macro
call is evaluated in an environment that is not the null lexical
environment, that environment is taken into account when

https://doi.org/10.5281/zenodo.2634303
https://doi.org/10.5281/zenodo.2634303
https://doi.org/10.5281/zenodo.2634303


make-method-lambda revisited ELS’19, April 01–02 2019, Genova, Italy

the method lambda is processed. For example, code like this
one:

(let ((x 10))

(defmethod foo ((y integer))

(+ x y)))

should work as expected.
Finally, the fourth argument to make-method-lambda is an

environment object.

2 PREVIOUS WORK

In their article [2], Costanza and Herzeel give a simple exam-
ple of this simple defmethod form:

(defmethod foo ((x integer) (y integer))

(do-something x y))

and at the end of section 2.1, on page 3, they claim that the
expansion of that form is “something like” the follow form:

(let ((gf (ensure-generic-function ’foo)))

(multiple-value-bind

(lambda-expression extra-initargs)

(make-method-lambda

gf

(class-prototype

(generic-function-method-class gf))

’(lambda (x y) (do-something x y))

lexical-environment-of-defmethod-form)

(add-method

gf

(apply #’make-instance

(generic-function-method-class gf)

:qualifiers ’()

:lambda-list ’(x y)

:specializers (list (find-class ’integer)

(find-class ’integer))

:function (compile nil lambda-expression)

extra-initargs))

except that we have formatted the code to fit the page, and
we have added two missing closing parentheses at the end of
the form.

This example is a slight variation on the code that is shown
in section 5.5.1 of the AMOP book. However, in that section,
it is not claimed that this code is the result of expanding
a defmethod form. Rather, it is given as “an example of
creating a generic function and a method metaobject, and
then adding the method to the generic function”.

Indeed, this expansion is not possible, at least not in a
compiling implementation, which is the premise of both the
paper by Costanza and Herzeel and this one. It has two
fundamental problems:

(1) The call to make-method-lambda must be made at
macro-expansion time, whereas in their example, the
call is present in the expansion, so it will be made at
load time.

(2) In their example, the resulting method lambda is com-
piled in the null lexical environment. However, com-
piling in the null lexical environment would violate
the semantics of the Common Lisp standard, which

requires that the body of the defmethod form be com-
piled in the lexical environment in which it appears.

In section 5.4.3 of the AMOP book, an example of an
expansion is shown, and figure 5.4 clearly mentions that
make-method-lambda is called during the macro-expansion
phase. Furthermore, in figure 5.3, which shows the expansion
of the defmethod macro, no call to compile is made. The
result of calling make-method-lambda, i.e., the method lambda
is simply present in the expanded code.

As Costanza and Herzeel point out, the defmethod macro
does not allow the programmer to specify a class for the
method to be created. That class must be determined by
the generic function to which the method is ultimately going
to be added. Therefore, in the case of a defgeneric form
followed by a defmethod form, the method class must be the
one indicated in the defgeneric form.

The conundrum, then, is that the file compiler does not
create the generic function as a result of compiling the
defgeneric form, so when a defmethod form with the same
name is encountered later in the same file, the method class
can not be taken from the generic function metaobject. Other-
wise, the normal way of obtaining the method class would be
to call the accessor generic-function-method-class, pass-
ing it the generic function metaobject with the name indi-
cated in the defmethod form. If there is no way for the file
compiler to determine the method class when the defmethod
form is encountered, then clearly the only choice is to call
make-method-lambda with the class prototype of the class
named standard-method as the second argument. However,
the analysis by Costanza and Herzeel is that this behavior is a
result of the file compiler calling ensure-generic-function

to obtain a generic-function metaobject and then querying
that object to obtain the method class. A simple experiment
shows that this is not the case in SBCL for instance.

When the following code is compiled with the SBCL file
compiler:

(defclass hello (standard-method) ())

(defgeneric foo (x y)

(:method-class hello))

(defmethod foo (x y)

(+ x y))

(eval-when (:compile-toplevel)

(print (fdefinition ’foo)))

the compilation fails when an attempt is made to find the
definition of foo in the last top-level form. Thus, after the
defmethod form has been compiled, the generic-function
metaobject still does not exist in the compilation environ-
ment.

However, tracing make-method-lambda prior to compiling
the code above in a fresh compilation environment reveals
that make-method-lambda is indeed called as a result of com-
piling the defmethod form, and that the second argument
passed to the call is an instance of standard-method.



ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

This situation can lead to some problems in client code that
are amply described in the paper by Costanza and Herzeel.
The essence of the problem is that, when a defgeneric form
with a non-standard :method-class option is followed by
a defmethod form in the same file, the file compiler may
generate an expansion of the defmethod form that creates
an instance of standard-method when the compiled file is
ultimately loaded, as opposed to an instance of the method
class with the name that was explicitly mentioned in the
defgeneric form.

Furthermore, this behavior is inconsistent with the behav-
ior when the source file is processed using load. The reason is
that, contrary to the file compiler, load completely processes
and evaluates each top-level form in order. As a result, when
load is used, the generic function metaobject is created as a
result of evaluating the defgeneric form, so that it does exist
when the defmethod form is ultimately evaluated. Clearly,
such inconsistent behavior between directly loading a source
file and loading the result of applying the file compiler to it
first is highly undesirable.

Perhaps even worse, even when the file compiler is used
consistently, if the file is recompiled after having been loaded
previously, the existing generic-function metaobject is reini-
tialized to have the correct method class, and the code works
as when load is used.

The ultimate conclusion by Costanza and Herzeel is that,
in order for the behavior of the file compiler to be consistent
with that of loading the source file directly, and indeed for
that behavior to be correct, the file compiler must create the
generic function metaobject at compile time, so that it can
be queried for the desired method class when the defmethod

form is encountered. In the next section, we propose an
alternative solution to this conundrum.

To solve the perceived problems with make-method-lambda,
Costanza and Herzeel first analyze what desirable features
this function has, and conclude that the following two are
essential:

(1) It can add new lexical definitions inside method bodies.
This is the feature that is used to introduce definitions
of next-method-p and call-next-method.

(2) It can create lambda expressions for method functions
with parameters in addition to the usual two, namely
one for holding the arguments to the generic function
and another for holding a list of next methods.

With these essential features in mind, Costanza and Herzeel
then propose an alternative to make-method-lambda that
does not have the perceived problem that this function has.

Their proposed solution has two parts:

(1) They use custom method-defining macros. Such a
macro would expand to a defmethod form, but this
form can contain additional lexical definitions into the
method body, introduced by the custom macro.

(2) They propose that method functions always be able
to take additional parameters in the form of Common
Lisp keyword parameters. Furthermore, the use of the
lambda-list keyword &allow-other-keys would make

it easier to combine method functions that accept dif-
ferent additional arguments.

While it is able to solve the problem of the inconsistent
behavior between compile-file and load, this solution has
two major disadvantages as pointed out by Costanza and
Herzeel:

(1) With this solution, method functions have a lambda list
that includes keyword parameters. Processing keyword
arguments imposes a significant performance penalty
on the invocation of method functions.

(2) Existing CLOS implementations that use a lambda list
without any keyword parameter for method functions
are incompatible with this solution.

In the next section, we propose a solution that has neither
of these disadvantages.

3 OUR TECHNIQUE

As permitted by the Common Lisp standard, the defgeneric
macro may store information provided in the defgeneric

form so as to make better error reporting possible when
subsequent forms are compiled. In particular, the standard
mentions storing information about the lambda list given, so
that subsequent calls to the generic function can be checked
for correct argument count. This information is kept in an
implementation-specific format that does not contain the
full generic-function metaobject, as this object is created
when the compiled code resulting from the file compilation
is loaded.

However, just as it is possible to keep information about
the lambda list at compile time, it is also possible to keep
information about the :method-class option given, or, when
no option was supplied, the fact that the method class is
standard-method.

With this additional information, during the expansion of
the defmethod macro, the name of the method class can be
retrieved, then a class metaobject from the name, and finally
a class prototype from the class metaobject.

While the first parameter of make-method-lambda is indi-
cated by the AMOP book as a generic-function metaobject,
it is not specifically indicated that this object might be unini-
tialized, contrary to the method object that must be passed
as the second argument. It is, however, indicated that the
generic-function object passed as the first argument may
not be the generic-function object to which the new method
will eventually be added. Therefore, there is not much in-
formation that make-method-lambda can make use of. The
exception would be the exact class of the generic function and
the exact method class. It would be awkward for a method
on make-method-lambda to access this information explicitly,
rather than as specializers of its parameters. For that reason,
the first argument to make-method-lambda might as well be
a class prototype, just as the second argument might be.

As an example of how to accomplish this additional infor-
mation, we suggest a solution with two parts:

(1) The first part involves the possibility for the compiler
to store information about a generic function in the



make-method-lambda revisited ELS’19, April 01–02 2019, Genova, Italy

compilation environment, as the result of compiling a
defgeneric form. Specifically, the name of the generic-
function class and the name of the method class would
need to be stored, and later retrieved.

(2) The second part requires a modification to the pro-
tocol used by the compiler to query the compilation
environment in order to determine how a form is to be
compiled.

For a solution to the first part, in Appendix A we show
how additional information about a generic function can be
stored and retrieved in the context of the protocol described
in Strandh’s paper on first-class global environments [5].

For the second part, recall that in section 8.5 of the second
edition of Guy Steele’s book on Common Lisp [4], the au-
thor describes a protocol for this kind of environment query.
This protocol contains three functions for environment query,
namely function-information, variable-information and
declaration-information.

Not only are these functions inadequate for all the infor-
mation that a compiler needs to determine about a function
or a variable, but they are also hard to extend in a backward-
compatible way. A modern version of this protocol would
likely return standard objects as opposed to multiple values,
thereby allowing for backward-compatible extensions on a
per-implementation basis.

For the second part of our solution, the environment func-
tion function-information, when given the name that has
previously been encountered in a defgeneric form, would
have to return information about the name of the generic-
function class and the method class. With this additional
information, the expander for the macro defmethod would
query the environment for this information, access the cor-
responding classes, and then the class prototypes, and fi-
nally call make-method-lambda with those prototypes as ar-
guments.

While our solution is an improvement on the existing
situation, it is clearly not perfect. For one thing, both the
generic-function class and the method class mentioned in
the defgeneric form must exist when the defmethod form
is encountered, so that the class prototypes of these classes
can be passed as arguments to make-method-lambda.

Also, when a custom generic-function class is used, it is pos-
sible that there exist custom methods on various generic func-
tions for initializing instances of this custom class, and these
custom methods could conceivably intercept and alter the
method class in the generic-function metaobject thus created.
In such a situation, our technique would then use incorrect
information about the method class, and pass the wrong class
prototype as the second argument to make-method-lambda.

4 CONCLUSIONS AND FUTURE
WORK

We have defined a technique that alleviates a problem en-
countered in current Common Lisp implementations when
a defgeneric form is followed by a defmethod form in the
same compilation unit. When the defgeneric form mentions

a method class other than standard-method, and the compi-
lation unit is processed in a fresh compilation environment,
current implementations do not propagate the information
about the method class to the macro expander for defmethod,
resulting in make-method-lambda being called with a method

argument of the wrong class.
Our solution requires the compiler of the Common Lisp

implementation to store a small amount of additional infor-
mation about the generic-function class and the method class
when the defgeneric form is encountered, and requires the
macro expander for defmethod to retrieve this information
by querying the compilation environment.

Contrary to the proposal by Costanza and Herzeel, our
suggested solution does not introduce any incompatibilities
that would render some existing code obsolete. Furthermore,
our solution does not have the potential performance problem
of the proposal by Costanza and Herzeel, i.e. the additional
cost of processing keyword arguments to method functions.

However, there are still some situations where our tech-
nique does not work. In particular, when a custom generic-
function class is used, and the initialization of instances of
this class intercepts and alters the information about the
method class as given in the defgeneric form. For cases
like this, we suggest that the author of the custom generic
function class also add a method on add-method, specialized
to the custom generic-function class so as to verify that the
class of the method being added is indeed correct, and signal
an error otherwise.

Future work includes adding the functions defined in Ap-
pendix A to the SICL1 protocol for first-class global environ-
ments.

The Cleavir compiler framework which is part of SICL
defines a modern version of the protocol for environment
query defined in the second edition of Guy Steele’s book [4].
We plan to extend this protocol to include information about
the name of the generic-function class and of the method
class given (explicitly or implicitly) in a defgeneric form
previously encountered in the current compilation environ-
ment. Since our existing protocol returns standard objects,
no modifications to the existing Cleavir code will be required
as a result of this extension. The extension will allow us to
define the macro defmethod in SICL to query the environ-
ment, and to invoke make-method-lambda with appropriate
arguments.

A PROTOCOL

In this appendix we present the additional generic functions
making up the protocol for our first-class global environments.

In order for our definitions to fit in a column, we have
abbreviated “Generic Function” as “GF”.

function-class-name fname env [GF ]
This generic function returns the name of the class of the

function associated with fname in env.
If fname is not associated with an ordinary function or a

generic function in env, then an error is signaled.

1See https://github.com/robert-strandh/SICL



ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

(setf function-class-name) class-name fname env [GF ]
This generic function is used to set the class name of the

function associated with fname in env to class-name.
If fname is associated with a macro or a special operator

in env, then an error is signaled.

method-class-name fname env [GF ]
This generic function returns the name of the method class

of the function associated with fname in env.
If fname is not associated with a generic function in env,

then an error is signaled.

(setf method-class-name) class-name fname env [GF ]
This generic function is used to set the class name for

methods of the function associated with fname in env to
class-name.

class-name must be a symbol naming a class.
If fname is not associated with a generic function in env,

then an error is signaled.

REFERENCES
[1] INCITS 226-1994[S2008] Information Technology, Programming

Language, Common Lisp. American National Standards Institute,
1994.

[2] Pascal Costanza and Charlotte Herzeel. make-method-lambda consid-
ered harmful. Technical report, Vrije Univrsiteit Brussels, Belgium,
2008.

[3] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, USA, 1991. ISBN
0262111586.

[4] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.).
Digital Press, Newton, MA, USA, 1990. ISBN 1-55558-041-6.

[5] Robert Strandh. First-class global environments in common lisp. In
Proceedings of the 8th European Lisp Symposium, ELS ’15, pages
79 – 86, April 2015. URL http://www.european-lisp-symposium.
org/editions/2015/ELS2015.pdf.

http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf

	Abstract
	1 Introduction
	2 Previous work
	3 Our technique
	4 Conclusions and future work
	A Protocol
	References

