First-class Global Environments in Common Lisp

Robert Strandh
University of Bordeaux
351, Cours de la Libération
Talence, France
robert.strandh@u-bordeaux1.fr

ABSTRACT

Environments are mentioned in many places in the Com-
mon Lisp standard, but the nature of such objects is not
specified. For the purpose of this paper, an environment
is a mapping from names to meanings. In a typical Com-
mon Lisp implementation the global environment is not a
first-class object.

In this paper, we advocate first-class global environments,
not as an extension or a modification of the Common Lisp
standard, but as an implementation technique. We state
several advantages in terms of bootstrapping, sandboxing,
and more. We show an implementation where there is no
performance penalty associated with making the environ-
ment first class. For performance purposes, the essence of
the implementation relies on the environment containing
cells (ordinary cons cells in our implementation) holding
bindings of names to functions and global values that are
likely to be heavily solicited at runtime.

Categories and Subject Descriptors
D.3.3 [Programming Languages|: Language Constructs and

Features—Modules, Packages; D.3.4 [Programming Languages|:

Processors—Code generation, Run-time environments

General Terms
Design, Languages

Keywords

CLOS, Common Lisp, Environment

1. INTRODUCTION

The Common Lisp standard contains many references to
environments. Most of these references concern lexical envi-
ronments at compile time, because they are needed in order
to process forms in non-null lexical environments. The stan-
dard does not specify the nature of these objects, though in

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.

ELS ’15, April 20 - 21 2015, London, UK Copyright is held by the author.

CLtL2 [5] there is a suggested protocol that is sometimes
supplied in existing Common Lisp implementations.

When it comes to global environments, however, the stan-
dard is even more reticent. In section 3.2.1 (entitled Com-
piler Terminology) of the Common Lisp HyperSpec, the dis-
tinction is made between the startup environment, the com-
pilation environment, the evaluation environment, and the
runtime environment. Excluding the runtime environment,
the standard allows for all the others to be identical.

In a typical Common Lisp implementation, these global en-
vironments are not first-class objects, and there is typically
only one global environment available as specifically allowed
by the standard. In some implementations, part of the en-
vironment is contained in other objects. For instance, it is
common for a symbol object to contain a value cell contain-
ing the global value (if any) of the variable having the name
of the symbol and/or a function cell containing the defini-
tion of a global function having the name of the symbol.
This kind of representation is even implicitly suggested by
the standard in that it sometimes uses terminology such as
value cell and function cell', while pointing out that this
terminology is “traditional”.

In this paper, we argue that there are many advantages to
making the global environment a first-class object. An im-
mediate advantage is that it is then possible to distinguish
between the startup environment, the compilation environ-
ment and the evaluation environment so that compile-time
evaluations by the compiler are not visible in the startup-
environment. However, as we show in this paper, there are
many more advantages, such as making it easier to create
a so-called sandbox environment, which is notoriously diffi-
cult to do in a typical Common Lisp implementation. An-
other significant advantage of first-class global environments
is that it becomes unnecessary to use temporary package
names for bootstrapping a target Common Lisp system from
a host Common Lisp system.

In order for first-class global environments to be a viable
alternative to the traditional implementation method, they
must not incur any performance penalty, at least not at
runtime. We show an implementation of first-class global
environments that respects this constraint by supplying cells
that can be thought of as the same as the traditional value

1Gee for instance the glossary entries for cell, value cell, and
function cell in the HyperSpec.

cells and function cells, except that they are dislocated so
that the are physically located in the environment object as
opposed to being associated with a symbol.

2. PREVIOUS WORK
2.1 Gelernter et al

The idea of first-class environments is of course not new.
Gelernter et al [1] defined a language called “Symmetric
Lisp” in which the programmer is allowed to evaluate ex-
pressions with respect to a particular first-class environment.
They suggest using this kind of environment as a replace-
ment for a variety of constructs, including closures, struc-
tures, classes, and modules. The present paper does not
have this kind of ambitious objective, simply because we do
not know how to obtain excellent performance for all these
constructs with our suggested protocol.

2.2 Miller and Rozas

Miller and Rozas [2] describe a set of extensions for the
Scheme programming language. In their paper, Miller and
Rozas also claim that their proposed first-class environments
could serve as a basis for an object-oriented system. Like the
present work, Miller and Rozas are concerned with perfor-
mance, and a large part of their paper is dedicated to this
aspect of their proposal.

In their paper, they show that the extensions incurs no per-
formance penalty for code that does not use it. However, for
code that uses the extension, the compiler defers accesses to
the first-class environment to the interpreter, thereby im-
posing a performance penalty in code using the extension.

The basic mechanism of their proposed extension is a special
form named make-environment that creates and returns an
environment in which the code in the body of that special
form is executed. The operators lexical-reference and
lexical-assignment are provided to access bindings in a
first-class environment.

From the examples in the paper, it is clear that their first-
class environments are meant to be used at a much finer
level of granularity than ours.

2.3 Queinnec and Roure

Queinnec and de Roure [3] proposed a protocol for first-
class environments in the context of the Scheme program-
ming language. Their motivation is different from ours, in
that their environments are meant to be part of the user-
visible interface so as to simplify sharing of various objects.
However, like the present work, they are also concerned with
performance, and they show how to implement their proto-
col without serious performance degradation.

The environments proposed by Queinnec and de Roure were
clearly meant to allow for modules as collections of bindings
where the bindings can be shared by other modules through
the use of the new operators export and import. In contrast,
the first-class environments proposed in the present paper
are not meant to allow such sharing of bindings, though our
proposal might allow such sharing for function and variable
bindings.

The paper by Queinnec and de Roure contains a thorough
survey of other work related to first-class environments that
will not be repeated here.

2.4 Garret’s lexicons

Ron Garret describes lezicons® which are said to be first-
class global environments. However, the concept of a lexi-
con is very different from the concept of a first-class global
environment as defined in this paper.

For one thing, a lexicon is “a mapping from symbols to
bindings”, which excludes a per-environment set of pack-
ages, simply because package names are not symbols, but
strings.

Furthermore, a clearly stated goal of lexicons is to create a
different Lisp dialect targeted to new users or to users that
have prior experience with languages that are different from
Lisp.

One explicit goal of lexicons is to replace Common Lisp pack-
ages, so that there is a single system-wide symbol with a
particular name. In contrast, the first-class environments
presented in this paper do not in any way affect the package
system. It should be noted that with our first-class envi-
ronments, symbols are still unique, i.e., for a given package
P and a given symbol name N, there is at most one sym-
bol with the name N in P; independently of the number of
first-class environments in the system.

Garret discusses the use of lexicons as modules and shows
examples where functions defined in one lexicon can be im-
ported into a different lexicon. The use of the operator use-
lexicon imports all the bindings of an explicitly-mentioned
lexicon into the current one. In the present work, we do not
emphasize the possibility of sharing bindings between first-
class environments. However, since functions and global val-
ues of special variables are stored in indirections called cells
in our environment, such sharing of bindings would also be
possible in the first-class environments presented in this pa-
per.

3. OUR TECHNIQUE

We suggest a CLOS-based protocol defining the set of oper-
ations on a first-class environment. This protocol contains
around 40 generic functions. The details of the proposed
protocol can be found in the appendix of this paper. The
protocol has been implemented as part of the SICL project.®

Mainly, the protocol contains versions of Common Lisp en-
vironment functions such as fboundp, find-class, etc. that
take an additional required environment argument.

For a simple example, consider the SICL implementation of
the standard Common Lisp function fboundp:

(defun fboundp (name)
(sicl-genv:fboundp
name

2Unpublished document. A PDF version can be found here:
http://www.flownet.com/ron/lisp/lexicons.pdf.
3See https://github.com /robert-strandh/SICL.

(load-time-value (sicl-genv:global-environment))))

In this example sicl-genv is the nickname for the package
named sicl-global-environment which contains the sym-
bols of the protocol defined in this paper. In each global en-
vironment, the function global-environment in that pack-
age returns the value of the environment itself. When the
definition in the example above is loaded, either as source
or from a previously compiled file, the value of the load-
time-value form will therefore be the global environment
in which the definition is loaded, thereby permanently link-
ing this definition to that global environment.

In addition to these functions, the protocol contains a set of
functions for accessing cells that in most implementations
would be stored elsewhere. Thus, a binding of a function
name to a function object contains an indirection in the
form of a function cell. The same holds for the binding of a
variable name (a symbol) to its global value. In our imple-
mentation, these cells are ordinary cons cells with the car
containing the value of the binding, and the cdr containing
nil. The reason for using ordinary cons cells is that they
are already supported in any Common Lisp implementation.
The only possible reason for choosing a different represen-
tation for cells would be to save one word in each cell, since
the cdr slot in each of our cons cells is wasted. However,
the saved space would probably be more than consumed by
the space occupied by specialized inspector functionality for
dealing with custom cell representations.

These cells are created as needed. The first time a refer-
ence to a function is made, the corresponding cell is created.
Compiled code that refers to a global function will have the
corresponding cell in its run-time environment. The cost
of accessing a function at run-time is therefore no greater
in our implementation than in an implementation that ac-
cesses the function through the symbol naming it, hence our
claim that there is no performance penalty for accessing this
information at run-time.

The SICL compiler translates a reference to a global function
(say foo) into something similar to this code:

(car
(load-time-value
(sicl-genv:function-cell
’foo
(sicl-genv:global-environment+))))

except that what is shown as car is not the full Common
Lisp function, because the argument is known to be a cons
cell. When the code containing this reference is loaded, the
resulting machine code will refer to a local variable contain-
ing the cons cell of the current global environment that is
permanently assigned to holding the function definition of
foo.

Our technique does, however, incur a performance penalty
for functions such as fdefinition and symbol-value with
an argument that is computed at run-time* compared to

“When the argument is a constant, a suitable compiler-

an implementation in which each symbol contains slots for
these objects. However, even in a high-performance imple-
mentation such as SBCL, these values are not contained in
symbol slots.

The performance penalty incurred on these functions de-
pends on the exact representation of the environment. The
representation of the environment is outside the scope of
this paper, however. Here, we only consider the protocol
for accessing it. However, it is not hard to devise a reason-
able implementation. In SICL, we use a hash table for each
namespace with the keys being the corresponding names® of
the entities in that namespace.

While it is possible for the application programmer to create
new global environments, it would not be a common thing
to do, at least not for the applications of first-class global
environments that we have considered so far. For that rea-
son, we have not streamlined any particular technique for
doing so. The difficulty is not in creating the environment
per se, but rather in filling it with useful objects. For the
purpose of bootstrapping, we currently fill environments by
loading code into it from files.

4. BENEFITS OF OUR METHOD

4.1 Native compilation

The Common Lisp standards suggests that the startup envi-
ronment and the evaluation environment may be different.®
Our method allows most evaluations by the compiler to have
no influence in the startup environment. It suffices to clone
the startup environment in order to obtain the evaluation
environment.

With the tradition of the startup environment and evalua-
tion environment being identical, some evaluations by the
compiler would have side effects in the startup environment.
In particular, the value cells and function cells are shared.
Therefore, executing code at compile time that alters the
global binding of a function or a variable will also be seen
in the startup environment.

As an example of code that should not be evaluated in the
startup environment, consider definitions of macros that are
only required for the correct compilation of some program,
as well as definitions of functions that are only required for
the expansion of such macros. A definition for this purpose
might be wrapped in an eval-when form with :compile-
toplevel as the only situation in which the definition should
be evaluated. When the evaluation environment and the
startup environment are identical, such a definition will be
evaluated in the startup environment, and persist after the
program has been compiled.

macro can turn the form into an access of the corresponding
cell.

SFunctions are named by symbols and lists; variables are
named by symbols; packages are named by strings; classes
are named by symbols; etc.

SRecall that the startup environment is the global environ-
ment as it was when the compilation was initiated, and
that the evaluation environment is the global environment
in which evaluations initiated by the compiler are accom-
plished.

4.2 Bootstrapping

For the purpose of this paper, we use the word bootstrapping
to mean the process of building the executable of some im-
plementation (the target system) by executing code in the
running process of another implementation (the host sys-
tem). The host and the target systems may be the same
implementation. In this context, a cross compiler is a com-
piler that executes in the host system while generating code
for the target system.

When a host Common Lisp system is used to bootstrap a
target Common Lisp system, the target system needs its
own definitions of many standard Common Lisp features. In
particular, in order to compile code for the target system in
the host system, the cross compiler needs access to the target
definitions of standard Common Lisp macros, in particular
the defining macros such as defun, defmacro, defgeneric,
defvar, etc.

It is, of course, not an option to replace the host versions
of such macros with the corresponding target versions. Do-
ing so would almost certainly break the host system in ir-
reparable ways. To avoid that the system might be damaged
this way, many Common Lisp systems have a feature called
package locks” which prevents the redefinition of standard
Common Lisp functions, macros, etc.

To deal with the problem of bootstrapping, some systems,
in particular SBCL, replace the standard package names by
some other names for target code, typically derived from the
standard names in some systematic way [4]. Using different
package names guarantees that there is no clash between a
host package name and the corresponding target package
name. However, using non-standard package names also
means that the text of the source code for the target will
not correspond to the target code that ends up in the final
system.

As an alternative to renaming packages, first-class global en-
vironments represent an elegant solution to the bootstrap-
ping problem. In a system that already supports first-class
global environments, creating a new such environment in
which the target definitions are allowed to replace standard
Common Lisp definitions is of course very simple. But even
in a host system that does not a priori support first-class
global environments, it is not very difficult to create such
environments.

Making the cross compiler access such a first-class global
environment is just a matter of structuring its environment-
lookup functions so that they do not directly use standard
Common Lisp functions such as fboundp or fdefinition,
and instead use the generic functions of the first-class global
environment protocol.

4.3 Sandboxing

It is notoriously hard to create a so-called sandbox environ-
ment for Common Lisp, i.e., an environment that contains a

"The name of this feature is misleading. While it does make
sure that the protected package is not modified, it also makes
sure that functions, macros, etc., with names in the package
are not redefined. Such redefinitions do not alter the package
itself, of course.

“safe” subset of the full language. A typical use case would
be to provide a Read-Eval-Print Loop accessible through a
web interface for educational purposes. Such a sandbox en-
vironment is hard to achieve because functions such as eval
and compile would have to be removed so that the environ-
ment could not be destroyed by a careless user. However,
these functions are typically used by parts of the system.
For example, CLOS might need the compiler in order to
generate dispatch code.

The root of the problem is that in Common Lisp there is al-
ways a way for the user of a Read-Eval-Print Loop to access
every global function in the system, including the compiler.
While it might be easy to remove functions that may render
the system unusable directly such as functions for opening
and deleting files, it is generally not possible to remove the
compiler, since it is used at run-time to evaluate expressions
and in many systems in order to create functions for generic
dispatch. With access to the compiler, a user can potentially
create and execute code for any purpose.

Using first-class global environments solves this problem in
an elegant way. It suffices to provide a restricted environ-
ment in which there is no binding from the names eval and
compile to the corresponding functions. These functions
can still be available in some other environment for use by
the system itself.

4.4 Multiple package versions

When running multiple applications in the same Common
Lisp process, there can easily be conflicts between different
versions of the same package. First-class global environ-
ments can alleviate this problem by having different global
environments for the different applications causing the con-
flict.

Suppose, for instance, that applications A and B both re-
quire some Common Lisp package P, but that P exists in
different versions. Suppose also that A and B require differ-
ent such versions of P. Since the Common Lisp standard has
no provisions for multiple versions of a package, it becomes
difficult to provide both A and B in the same Common Lisp
process.

Using first-class global environments as proposed in this pa-
per, two different global environments can be created for
building A and B. These two environments would differ in
that the name P would refer to different versions of the
package P.

4.5 Separate environment for each application
Taking the idea of Section 4.4 even further, it is sometimes
desirable for a large application to use a large number of
packages that are specific to that application. In such a
situation, it is advantageous to build the application in a
separate global environment, so that the application-specific
packages exist only in that environment. The main entry
point(s) of the application can then be made available in
other environments without making its packages available.

Using separate first-class global environments for this pur-
pose would also eliminate the problem of choosing package
names for an application that are guaranteed not to conflict

with names of packages in other applications that some user
might simultaneously want to install.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we have advocated first-class global environ-
ments as a way of implementing the global environments
mentioned in the HyperSpec. We have seen that this tech-
nique has several advantages in terms of flexibility of the
system, and that it greatly simplifies certain difficult prob-
lems such as bootstrapping and sandboxing.

An interesting extension of our technique would be to con-
sider environment inheritance.® For example, an environ-
ment providing the standard bindings of the Common Lisp
language could be divided into an immutable part and a
mutable part. The mutable part would then contain fea-
tures that can be modified by the user, such as the generic
function print-object or the variable *print-base*, and it
would inherit from the immutable part. With this feature,
it would only be necessary to clone the mutable part in or-
der to create the evaluation environment from the startup
environment as suggested in Section 4.1.

We also think that first-class global environments could be
an excellent basis for a multi-user Common Lisp system.

In such a system, each user would have an initial, private,
environment. That environment would contain the stan-
dard Common Lisp functionality. Most standard Common
Lisp functions would be shared between all users. Some
functions, such as print-object or initialize-instance
would not be shared, so as to allow individual users to add
methods to them without affecting other users.

Furthermore, functionality that could destroy the integrity
of the system, such as access to raw memory, would be ac-
cessible in an environment reserved for system maintenance.
This environment would not be accessible to ordinary users.

6. ACKNOWLEDGMENTS

We would like to thank Alastair Bridgewater, David Murray,
Robert Smith, Nicolas Hafner, and Bart Botta for providing
valuable feedback on early versions of this paper.

APPENDIX
A. PROTOCOL

In this appendix we present the generic functions making
up the protocol for our first-class global environments. The
definitions here should be considered preliminary, because
there are some aspects of this protocol that need further con-
sideration. As an example, consider the function function-
lambda-list. We have not made up our minds as to whether
this function should be part of the protocol, or just a func-
tion to be applied to function objects.

In order for our definitions to fit in a column, we have ab-
breviated “Generic Function” as “GF”.

+global-environment+ [Constant]

8We mean inheritance not in the sense of subclassing, but
rather as used in section 3.2.1 of the HyperSpec.

In each global environment e, the value of this constant vari-
able is e.

global-environment [Function]

In each global environment e, this function takes no argu-
ments and returns e.

fboundp frname env [GF]

This generic function is a generic version of the Common
Lisp function cl:fboundp.

It returns true if fname has a definition in env as an ordinary
function, a generic function, a macro, or a special operator.

fmakunbound frname env [GF]

This generic function is a generic version of the Common
Lisp function cl:fmakunbound.

Makes fname unbound in the function namespace of env.

If fname already has a definition in env as an ordinary func-
tion, as a generic function, as a macro, or as a special oper-
ator, then that definition is lost.

If fname has a setf expander associated with it, then that
setf expander is lost.

special-operator fname env [GF]

If fname has a definition as a special operator in env, then
that definition is returned. The definition is the object
that was used as an argument to (setf special-operator).
The exact nature of this object is not specified, other than
that it can not be nil. If fname does not have a definition
as a special operator in env, then nil is returned.

(setf special-operator) new-def fname env [GF]

Set the definition of fname to be a special operator. The
exact nature of new-def is not specified, except that a value
of nil means that fname no longer has a definition as a
special operator in enwv.

If a value other than nil is given for new-def, and fname
already has a definition as an ordinary function, as a generic
function, or as a macro, then an error is signaled. As a
consequence, if it is desirable for fname to have a definition
both as a special operator and as a macro, then the definition
as a special operator should be set first.

fdefinition fname env [GF]

This generic function is a generic version of the Common
Lisp function cl:fdefinition.

If fname has a definition in the function namespace of env
(i.e., if fboundp returns true), then a call to this function
succeeds. Otherwise an error of type undefined-function
is signaled.

If fname is defined as an ordinary function or a generic func-
tion, then a call to this function returns the associated func-
tion object.

If fname is defined as a macro, then a list of the form
(cl:macro-function function) is returned, where function

is the macro expansion function associated with the macro.

If fname is defined as a special operator, then a list of the
form (cl:special object) is returned, where the nature of
object is currently not specified.

(setf fdefinition) new-def fname env [GF)

This generic function is a generic version of the Common
Lisp function cl:fdefinition.

new-def must be an ordinary function or a generic function.
If fname already names a function or a macro, then the
previous definition is lost. If fname already names a special
operator, then an error is signaled.

If fname is a symbol and it has an associated setf expander,
then that setf expander is preserved.

macro-function symbol env [GF]

This generic function is a generic version of the Common
Lisp function cl:macro-function.

If symbol has a definition as a macro in enwv, then the corre-
sponding macro expansion function is returned.

If symbol has no definition in the function namespace of env,
or if the definition is not a macro, then this function returns
nil.

(setf macro-function) new-def symbol env [GF]

This generic function is a generic version of the Common
Lisp function (setf cl:macro-function).

new-def must be a macro expansion function or nil. A call
to this function then always succeeds. A value of nil means
that the symbol no longer has a macro function associated
with it. If symbol already names a macro or a function,
then the previous definition is lost. If symbol already names
a special operator, that definition is kept.

If symbol already names a function, then any proclamation
of the type of that function is lost. In other words, if at
some later point symbol is again defined as a function, its
proclaimed type will be t.

If symbol already names a function, then any inline or
notinline proclamation of the type of that function is lost.
In other words, if at some later point symbol is again defined
as a function, its proclaimed inline information will be nil.

If fname is a symbol and it has an associated setf expander,
then that setf expander is preserved.

compiler-macro-function fname env [GF]

This generic function is a generic version of the Common
Lisp function cl:compiler-macro-function.

If fname has a definition as a compiler macro in enwv, then
the corresponding compiler macro function is returned.

If fname has no definition as a compiler macro in env, then
this function returns nil.

(setf compiler-macro-function) new-def fname env [GF)|

This generic function is a generic version of the Common
Lisp function (setf cl:compiler-macro-function).

new-def can be a compiler macro function or nil. When
it is a compiler macro function, then it establishes new-def
as a compiler macro for fname and any existing definition
is lost. A value of nil means that fname no longer has a
compiler macro associated with it in env.

function-type fname env [GF]

This generic function returns the proclaimed type of the
function associated with fname in enw.

If fname is not associated with an ordinary function or a
generic function in enw, then an error is signaled.

If fname is associated with an ordinary function or a generic
function in enwv, but no type proclamation for that function
has been made, then this generic function returns t.

(setf function-type) new-type fname env [GF]

This generic function is used to set the proclaimed type of
the function associated with fname in env to new-type.

If fname is associated with a macro or a special operator in
env, then an error is signaled.

function-inline fname env [GF]

This generic function returns the proclaimed inline informa-
tion of the function associated with fname in enw.

If fname is not associated with an ordinary function or a
generic function in env, then an error is signaled.

If fname is associated with an ordinary function or a generic
function in enwv, then the return value of this function is
either nil, inline, or notinline. If no inline proclamation
has been made, then this generic function returns nil.

(setf function-inline) new-inline fname env [GF)

This generic function is used to set the proclaimed inline
information of the function associated with frname in env to
new-inline.

new-inline must have one of the values nil, inline, or
notinline.

If fname is not associated with an ordinary function or a
generic function in enw, then an error is signaled.

function-cell fname env [GF]

A call to this function always succeeds. It returns a cons
cell, in which the car always holds the current definition of
the function named fname. When fname has no definition
as a function, the car of this cell will contain a function that,
when called, signals an error of type undefined-function.
The return value of this function is always the same (in
the sense of eq) when it is passed the same (in the sense
of equal) function name and the same (in the sense of eq)
environment.

function-unbound fname env [GF]

A call to this function always succeeds. It returns a func-

tion that, when called, signals an error of type undefined-
function. When fname has no definition as a function, the
return value of this function is the contents of the cons cell
returned by function-cell. The return value of this func-
tion is always the same (in the sense of eq) when it is passed
the same (in the sense of equal) function name and the same
(in the sense of eq) environment. Client code can use the
return value of this function to determine whether fname is
unbound and if so signal an error when an attempt is made
to evaluate the form (function fname).

function-lambda-list fname env [GF]

This function returns two values. The first value is an ordi-
nary lambda list, or nil if no lambda list has been defined
for fname. The second value is true if and only if a lambda
list has been defined for frname.

boundp symbol env [GF]

It returns true if symbol has a definition in env as a con-
stant variable, as a special variable, or as a symbol macro.
Otherwise, it returns nil.

constant-variable symbol env [GF]

This function returns the value of the constant variable sym-
bol.

If symbol does not have a definition as a constant variable,
then an error is signaled.

(setf constant-variable) wvalue symbol env [GF]

This function is used in order to define symbol as a constant
variable in env, with value as its value.

If symbol already has a definition as a special variable or as
a symbol macro in enwv, then an error is signaled.

If symbol already has a definition as a constant variable, and
its current value is not eql to value, then an error is signaled.

special-variable symbol env [GF]

This function returns two values. The first value is the value
of symbol as a special variable in env, or nil if symbol does
not have a value as a special variable in env. The second
value is true if symbol does have a value as a special variable
in env and nil otherwise.

Notice that the symbol can have a value even though this
function returns nil and nil. The first such case is when the
symbol has a value as a constant variable in env. The second
case is when the symbol was assigned a value using (setf
symbol-value) without declaring the variable as special.

(setf special-variable) walue symbol env init-p [GF]

This function is used in order to define symbol as a special
variable in env.

If symbol already has a definition as a constant variable or as
a symbol macro in enwv, then an error is signaled. Otherwise,
symbol is defined as a special variable in env.

If symbol already has a definition as a special variable, and
init-p is nil, then this function has no effect. The current
value is not altered, or if symbol is currently unbound, then

it remains unbound.

If init-p is true, then wvalue becomes the new value of the
special variable symbol.

symbol-macro symbol env [GF]

This function returns two values. The first value is a macro
expansion function associated with the symbol macro named
by symbol, or nil if symbol does not have a definition as a
symbol macro. The second value is the form that symbol
expands to as a macro, or nil if symbol does not have a
definition as a symbol macro.

It is guaranteed that the same (in the sense of eq) function
is returned by two consecutive calls to this function with the
same symbol as the first argument, as long as the definition
of symbol does not change.

(setf symbol-macro) ezpansion symbol env [GF]

This function is used in order to define symbol as a symbol
macro with the given expansion in env.

If symbol already has a definition as a constant variable, or
as a special variable, then an error of type program-error
is signaled.

variable-type symbol env [GF]

This generic function returns the proclaimed type of the
variable associated with symbol in env.

If symbol has a definition as a constant variable in enwv, then
the result of calling type-of on its value is returned.

If symbol does not have a definition as a constant variable
in env, and no previous type proclamation has been made
for symbol in enwv, then this function returns t.

(setf variable-type) new-type symbol env [GF]

This generic function is used to set the proclaimed type of
the variable associated with symbol in enwv.

If symbol has a definition as a constant variable in enwv, then
an error is signaled.

It is meaningful to set the proclaimed type even if sym-
bol has not previously been defined as a special variable or
as a symbol macro, because it is meaningful to use (setf
symbol-value) on such a symbol.

Recall that the HyperSpec defines the meaning of proclaim-
ing the type of a symbol macro. Therefore, it is meaningful
to call this function when symbol has a definition as a symbol
macro in enw.

variable-cell symbol env [GF]

A call to this function always succeeds. It returns a cons
cell, in which the car always holds the current definition of
the variable named symbol. When symbol has no definition
as a variable, the car of this cell will contain an object that
indicates that the variable is unbound. This object is the
return value of the function variable-unbound. The return
value of this function is always the same (in the sense of eq)
when it is passed the same symbol and the same environ-
ment.

variable-unbound symbol env [GF]

A call to this function always succeeds. It returns an object
that indicates that the variable is unbound. The cons cell
returned by the function variable-cell contains this object
whenever the variable named symbol is unbound. The re-
turn value of this function is always the same (in the sense of
eq) when it is passed the same symbol and the same environ-
ment. Client code can use the return value of this function
to determine whether symbol is unbound.

find-class symbol env [GF]

This generic function is a generic version of the Common
Lisp function cl:find-class.

If symbol has a definition as a class in enwv, then that class
metaobject is returned. Otherwise nil is returned.

(setf find-class) new-class symbol env [GF]

This generic function is a generic version of the Common
Lisp function (setf cl:find-class).

This function is used in order to associate a class with a
class name in env.

If new-class is a class metaobject, then that class metaobject
is associated with the name symbol in env. If symbol already
names a class in env than that association is lost.

If new-class is nil, then symbol is no longer associated with
a class in env.

If new-class is neither a class metaobject nor nil, then an
error of type type-error is signaled.

setf-expander symbol env [GF)

This generic function returns the setf expander associated
with symbol in env. If symbol is not associated with any
setf expander in env, then nil is returned.

(setf setf-expander) new-expander symbol env [GF]

This generic function is used to set the setf expander asso-
ciated with symbol in env.

If symbol is not associated with an ordinary function, a
generic function, or a macro in env, then an error is sig-
naled.

If there is already a setf expander associated with symbol
in enw, then the old setf expander is lost.

If a value of nil is given for new-expander, then any current
setf expander associated with symbol is removed. In this
case, no error is signaled, even if symbol is not associated
with any ordinary function, generic function, or macro in
env.

default-setf-expander env [GF]

This generic function returns the default setf expander, to
be used when the function setf-expander returns nil. This
function always returns a valid setf expander.

(setf default-setf-expander) new-ezpander env [GF]

This generic function is used to set the default setf ex-

pander in env.

type-expander symbol env [GF]

This generic function returns the type expander associated
with symbol in env. If symbol is not associated with any
type expander in env, then nil is returned.

(setf type-expander) new-expander symbol env [GF]

This generic function is used to set the type expander asso-
ciated with symbol in env.

If there is already a type expander associated with symbol
in env, then the old type expander is lost.

find-package name env [GF]

Return the package with the name or the nickname name
in the environment enwv. If there is no package with that
name in env, then return nil. Contrary to the standard
Common Lisp function c1:find-package, for this function,
name must be a string.

package-name package env [GF]
Return the string that names package in env. If package
is not associated with any name in env, then nil is re-
turned. Contrary to the standard Common Lisp function
cl:package-name, for this function, package must be a pack-
age object.

(setf package-name) new-name package env [GF]

Make the string new-name the new name of package in env.
If new-name is nil, then package no longer has a name in
env.

package-nicknames package env [GF]

Return a list of the strings that are nicknames of package
in env. Contrary to the standard Common Lisp function
cl:package-nicknames, for this function, package must be
a package object.

(setf package-nicknames) new-names package env [GF]

Associate the strings in the list new-names as nicknames of
package in env.

B. REFERENCES

[1] D. Gelernter, S. Jagannathan, and T. London.
Environments as first class objects. In Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’87,
pages 98-110, New York, NY, USA, 1987. ACM.

[2] J. S. Miller and G. J. Rozas. Free variables and
first-class environments. Lisp and Symbolic
Computation, 4(2):107-141, Mar. 1991.

[3] C. Queinnec and D. de Roure. Sharing code through
first-class environments. In Proceedings of the First
ACM SIGPLAN International Conference on
Functional Programming, ICFP ’96, pages 251-261,
New York, NY, USA, 1996. ACM.

[4] C. Rhodes. Self-sustaining systems. chapter SBCL: A
Sanely-Bootstrappable Common Lisp, pages 74-86.
Springer-Verlag, Berlin, Heidelberg, 2008.

[5] G. L. Steele, Jr. Common LISP: The Language (2nd
Ed.). Digital Press, Newton, MA, USA, 1990.

