
A CLOS protocol for lexical environments

Robert Strandh
robert.strandh@gmail.com

Unaffiliated

Irène Durand
irene.durand@u-bordeaux.fr

LaBRI, University of Bordeaux
Talence, France

ABSTRACT

The concept of an environment is mentioned in many places
in the Common Lisp standard, but the nature of the object is
not specified. For the purpose of this paper, an environment
is a mapping (or several such mappings when there is more
than one namespace as is the case for Common Lisp) from
names to meanings.

In this paper, we propose a replacement for the environ-
ment protocol documented in the book “Common Lisp the
Language, second edition” by Guy Steele. Rather than return-
ing multiple values as the functions in that protocol do, the
protocol suggested in this paper is designed so that functions
return instances of standard classes. Accessor functions on
those instances supply the information needed by a compiler
or any other code walker application.

The advantage of our approach is that a protocol based
on generic functions and standard classes is easier to extend
in backward-compatible ways than the previous protocol, so
that implementations can define additional functionality on
these objects. Furthermore, CLOS features such as auxiliary
methods can be used on these objects, making it possible to
extend or override functionality provided by the protocol, for
implementation-specific purposes.

CCS CONCEPTS

� Software and its engineering � Compilers;

KEYWORDS

CLOS, Common Lisp, Environment, Compilation

ACM Reference Format:
Robert Strandh and Irène Durand . 2022. A CLOS protocol for

lexical environments. In Proceedings of the 15th European Lisp
Symposium (ELS’22). ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.5281/zenodo.6331519

1 INTRODUCTION

The Common Lisp standard [1] contains many references
to environments. Most of these references concern lexical
environments at compile time, because they are needed in
order to process forms in non-null lexical environments. The
standard does not specify the nature of these objects, though

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’22, March 21–22 2022, Porto, Portugal

© 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6331519

in the book “Common Lisp, the Language, second edition”
[4] (henceforth referred to as “CLtL2”) there is a suggested
protocol that is supplied by some existing Common Lisp
implementations.

The protocol documented in CLtL2 has several problems.
Functions in the protocol return multiple values, a fact that
makes the protocol hard to extend. Furthermore, the protocol
is incomplete. A typical compiler needs more information
than the protocol provides, making implementation-specific
extensions obligatory for the protocol to be useful. For that
reason, although existing Common Lisp implementations
often provide such extensions, the CLtL2 protocol is not
what the native compiler of the implementation actually
uses.

In this paper, we propose a modern alternative protocol
based on CLOS. Rather than returning multiple values, our
protocol functions return instances of standard classes. Acces-
sors for those instances can be used by compilers and other
code walker applications in order to obtain the information
needed for the task to be accomplished. This protocol is
defined and implemented in the Trucler library.1

Two of the functions in the section about environments in
CLtL2 are not discussed in this paper, namely parse-macro

and enclose. These functions do not contribute any func-
tionality to the protocol being described, and the interface
provided by these functions does not require any modifica-
tions, which is why they are not discussed here. The function
enclose requires an evaluator such as a compiler or an inter-
preter, and the evaluator will certainly use the functionality
in the protocol, but not add to it. The function parse-macro

does not seem to even use this functionality, and indeed the
optional env parameter of this function is declared ignore

both in SBCL and CCL.
Although parse-macro and enclose are essential for any

code-walking application, the purpose of the current work
is not to provide a complete implementation-independent
library for code walking, but just to propose an alternative
protocol for accessing lexical environments.

2 PREVIOUS WORK

In this section, we describe how different implementations of
Common Lisp represent lexical environments, and whether
these implementations include a version of the protocol de-
scribed in CLtL2. For commercial implementations, we in-
clude only their documented version of the CLtL2 protocol.
We start by presenting the details of the CLtL2 protocol as
described in the book.

1https://github.com/s-expressionists/Trucler

https://doi.org/10.5281/zenodo.6331519
https://doi.org/10.5281/zenodo.6331519
https://doi.org/10.5281/zenodo.6331519


ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

2.1 Common Lisp the Language, second
edition

Section 8.5 of CLtL2 describes a set of functions for obtaining
information from an environment object, for creating a new
such object by augmenting an existing one, and two more
operators related to environments that are outside the scope
of this paper, i.e., parse-macro and enclose.

In this section, we provide an overview of that protocol,
and we give an assessment of its usefulness in the context of
a language processor.

2.1.1 Environment query. For environment query, the pro-
tocol defines three functions. We describe them briefly here.

The function variable-information takes a symbol and
an optional environment object as arguments. It returns
three values. The first value indicates the type of the binding
(lexical variable, special variable, symbol macro, constant
variable) or nil if there is no binding or definition in the
environment for that symbol The second value is a Boolean,
indicating whether the binding is local or global. The third
value is an association list containing declarations that apply
to the binding.

The function function-information takes a function name
and an optional environment as arguments. Again, three val-
ues are returned. The first value indicates the type of the
binding (function, macro, special operator2) or nil if there is
no binding or definition in the environment for that function
name. As before, the second value indicates whether the defi-
nition is local or global, and the third value is an association
list of declarations that apply.

The function declaration-information is used in order
to query the environment for declarations that do not apply
to any particular binding in the environment. It takes a decla-
ration identifier3 and an optional environment as arguments.
The declaration identifier can be the symbol optimize, the
symbol declaration, or some implementation-defined dec-
laration identifier. It returns a single value that contains
information related to the corresponding declaration identi-
fier.

To begin with, it is clear that this set of functions is
insufficient to process all Common Lisp code, because no
mechanism is described for querying the environment for
information related to blocks and go tags. Functions for this
purpose are provided as extensions by Allegro Common Lisp
as described in Section 2.7, and by LispWorks as described
in Section 2.8.

2.1.2 Environment augmentation. For augmenting an en-
vironment, i.e., creating a new, augmented, environment
from an existing one, the same section describes the func-
tion augment-environment. This function has a keyword pa-
rameter for each type of object to be added to the current
lexical environment: :variable, :symbol-macro, :function,

2The term used in the book is special form, but the terminology has
been improved since then
3The term used in the book is name and the parameter is called
decl-name, but the terminology has changed since then.

:macro, and :declare. Furthermore, each argument is a list
of lexical definitions, thereby allowing an arbitrary number of
mappings to be added to an environment in order to create
an augmented environment.

2.1.3 Assessment of the protocol. In general, the protocol
as described in the book is insufficient for use in any but the
simplest kind of language processor. Even if query functions
are added for tags and blocks, and additional keyword ar-
gument are added to the function augment-environment for
tags and blocks, we argue that the protocol would still be
insufficient.

Any non-trivial language processor would need for a func-
tion such as function-information to return information
about the function, other than related declarations. At the
very least, information such as the lambda list of the func-
tion, and information needed for inlining, would have to be
included.

The protocol could obviously be extended to allow for such
information, but such extensions would involve incompatible
additions such as more return values. Furthermore, none of
the Common Lisp implementations we investigated use this
protocol internally, which is an indication that the compiler
needs more information than the protocol provides. And none
of the implementations we investigated provide extensions
that would allow the use of the protocol in a non-trivial
language processor.

2.2 SBCL

2.2.1 Native. SBCL4 defines a structure class lexenv. In-
stances of this class are passed as the &environment argument
to macro expanders and other functions that take lexical en-
vironment objects as arguments.

This structure class contains several slots, and in particu-
lar:

∙ An association list of information about defined func-
tions. The name of the function is used as a key.

∙ An association list of information about defined vari-
ables. The name of the variable is used as a key.

∙ An association list of information about blocks, The
name of the block is used as a key.

∙ An association list of information about tagbody tags.
The name of the tag is used as a key.

2.2.2 CLtL2. The distribution of SBCL contains a contri-
bution that supplies some of the funtionality described in the
book CLtL2 but that was not included in the Common Lisp
standard. Part of this contribution is an implementation of
the environment protocol of CLtL2.

2.3 CCL

2.3.1 Native. CCL5 defines a class lexical-environment
which is a special kind of class called an istruct. Classes
of this type are represented as lists of slots rather than as

4http://ww.sbcl.org/
5https://ccl.clozure.com/



A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

standard objects as would normally be the case, probably for
reasons of bootstrapping.

2.3.2 CLtL2. CCL has implementations of the functions
defined in CLtL2. These functions take a native lexical envi-
ronment as an optional argument.

2.4 CMUCL

2.4.1 Native. A lexical environment is an instance of the
structure class lexenv. There is a slot for each type of entry,
i.e., functions, variables, blocks, tags, and some other
slots for implementation-specific details. Each of the main
slots contains an association list in which the name is the key
and the value contains associated information for the name.

Access to the lexical environment is provided by the macro
lexenv-find and the function lexenv-find-function. These
operators do not take an environment object as an argument,
and instead access this object as the value of the special vari-
able *lexical-environment*. And lexenv-find-function

is a wrapper for a call to lexenv-find with a specific :test

function for the key of the association list containing func-
tions.

2.4.2 CLtL2. CMUCL provides definitions of the functions
defined in CLtL2. The code for these functions is defined
in the package ext. No extensions are provided for tags or
blocks.

2.5 ECL

2.5.1 Native. The native compilation environment of ECL6

is represented as a single cons cell where the car is a list
of variable records and the cdr is a list of macro records.
Information about blocks and tags is included in the list of
variable records. With few exceptions, a record is a list with
the name of the entity in the car. Records for blocks and
tags are distinguished by having a keyword symbol :block
or :tag in the car of the list representing the record.

2.5.2 CLtL2. Currently, ECL does not offer a CLtL2-
compatible interface to its lexical environments. Some work
has been done to create such an interface, but it is still work
in progress.

2.6 Clasp

2.6.1 Native. The native compilation environment of Clasp7

is currently that used in early versions of the Cleavir8 compiler
framework. Ultimately, Clasp will use Trucler as described
in Section 3.

2.6.2 CLtL2. Clasp provides an implementation of the
CLtL2 protocol. The code is present in the package named
clasp-cltl2. The function augment-environment has two
additional keyword arguments, namely tag and block. How-
ever, no extension allows for client code to access information
about blocks and tags.

6https://common-lisp.net/project/ecl/
7https://github.com/clasp-developers/clasp
8https://github.com/s-expressionists/Cleavir

2.7 Allegro

2.7.1 Support for CLtL2 protocol. The documentation for
Allegro Common Lisp contains a separate document describ-
ing their protocol for environments in the spirit of CLtL2.9

We summarize the differences between the Allegro implemen-
tation and the CLtL2 protocol here.

∙ Information about blocks and tags have been added
in the form of two new functions block-information
and tag-information.

∙ The function augment-environment accepts additional
keywords arguments such as :block, :tag, etc. in order
to make it possible to augment an environment with
all relevant information that the language processor
may encounter.

∙ The function augment-environment accepts an addi-
tional keyword argument :locative that can be used
by client code to supply additional information about
the entity, for example the value of a constant variable.
The query functions return an additional value which
is the information supplied to augment-environment.

∙ The order and the number of the return values of the
query functions have been modified, so as to allow for
the additional locative value, and to have frequently
used return values before the less frequently used.

∙ Several other features have been added to the protocol
in order to make it a complete tool for a language
processor, and for the purpose of minimizing memory
allocation. These additional features are outside the
scope of this paper.

2.8 LispWorks

2.8.1 Support for CLtL2 protocol. The documentation for
LispWorks Common Lisp describes the operators that imple-
ment the CLtL2 protocol. These operators are available in
the hcl package.

Like Allegro, LispWorks also provides the functionality
for blocks and tags that is missing from the CLtL2 proto-
col, but instead of adding functions block-information and
tag-information, LispWorks provides a single additional
function named map-environment. This function has a single
required parameter, namely an environment object. It has
four keyword parameters: variable, function, block, and tag.
Each corresponding argument is a designator for a function
that can accept three arguments: name, kind, and info as
follows:

∙ The function variable is called for each local variable
binding in the environment. name is the name of the
variable, kind is one of :special, :symbol-macro or
:lexical, with the same meaning as for the function
variable-information in the CLtL2 protocol. When
kind is :symbol-macro, then info is the expansion;
otherwise, info is unspecified.

∙ The function function is called for each local function
in the environment. name is the name of the function,

9https://franz.com/support/documentation/current/doc/environments.htm



ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

kind is one of :macro or :function, with the same
meaning as for the function function-information

in the CLtL2 protocol. When kind is :macro, then
info is the macro-expansion function; otherwise, info
is unspecified.

∙ The function block is called for each block in the envi-
ronment. name is the name of the block, kind is the
keyword symbol :block, and info is unspecified.

∙ The function tag is called for each tag in the environ-
ment. name is the name of the tag, kind is the keyword
symbol :tag, and info is unspecified.

However, when map-environment calls the function in the
keyword argument function and the name of the function
is of the form (setf symbol), then the argument is not the
name of the function, but instead a symbol that is used
internally in LispWorks to name the function. According to
the maintainer of LispWorks, this restriction will be removed
in future versions.

Similarly, the keyword argument :function of the function
augment-environment must be a list of symbols. To represent
a function with a name of the form (setf symbol), the
internal symbol used by LispWorks must be passed, rather
than the true name of the function. Again, this restriction
will be removed in future versions.

2.9 CLtL2 compatibility system

The system cl-environments10 provides a compatibility layer
that allows client code to use the CLtL2 environment pro-
tocol independently of the Common Lisp implementation.
Supported Common Lisp implementations are CLISP, CCL,
ECL, ABCL, CMUCL, SBCL, Allegro, and LispWorks.

This library does not provide additional operators for
querying the environment for tags or blocks, nor does it
provide keyword arguments on augment-environment for
augmenting an environment with such information.

2.10 Software including a code walker

In his paper presented at the European Lisp Symposium
2017 [3], Raskin gives an overview of various libraries that
require code walking. In that paper, he also argues that it
is impossible to write a completely portable code walker,
although he addresses many of the difficulties in his own,
mostly portable, code walker named Agnostic Lizard.

In particular, one of the libraries he mentions in his paper
is hu.dwim.walker. This library provides a general-purpose
configurable code walker. It uses its own protocol for accessing
and augmenting the environment. This protocol resembles
the one presented in this paper in some ways.

3 OUR TECHNIQUE

We define a CLOS-based protocol for accessing and aug-
menting a lexical environment. This protocol is defined and
implemented in the Trucler library.

10https://github.com/alex-gutev/cl-environments

3.1 Querying the environment

A language processor calls one of the query functions in order
to determine the nature of a language element, depending on
the position in source code of that language element. All these
functions are generic, and they all take a client parameter
and an environment parameter. Methods defined by Trucler
do not specialize to the client parameter. Client code should
pass an object specific to the application as a value of that
parameter, and it can supply methods specialized to the class
of this object, for the purpose of extending or overriding
default behavior. The environment parameter is an object of
the type used by the implementation that Trucler is config-
ured for. Functions that are used to query a particular name
have an additional parameter for this purpose.

The following query functions are defined by Trucler. Each
one returns an instance of a class that allows the language
processor to determine the exact nature of the language
element (nil is returned if there is no definition for the
element), for example by using the instance in a call to a
generic function:

∙ describe-variable. This function returns an instance
of a class that distinguishes lexical variables, special
variables, constant variables, and symbol macros.

∙ describe-function. This function returns an instance
of a class that distinguishes global functions, local
functions, and macros.

∙ describe-block.
∙ describe-tag.
∙ describe-optimize.
∙ describe-declarations. This function is called by the
language processor in order to determine the declara-
tion identifiers of declaration proclamations.

3.2 Augmenting the environment

A language processor calls one of the augmentation func-
tions in order to define a lexical environment within the
scope of a declaration or a definition encountered in source
code. All these functions take at least a client parameter
and an environment parameter just like the query functions,
and they all return a new lexical environment, augmented
according to the function being called.

The following functions are called by the language proces-
sor when a local definition is encountered, and they return a
new environment that includes the new definition:

∙ add-lexical-variable.
∙ add-special-variable.
∙ add-local-symbol-macro.
∙ add-local-function.
∙ add-local-macro.
∙ add-block.
∙ add-tag.

The following functions are called by the language processor
as the result of a local declaration that restricts an existing
local function or variable:

∙ add-variable-type.



A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

∙ add-variable-ignore.
∙ add-variable-dynamic-extent.
∙ add-function-type.
∙ add-function-ignore.
∙ add-function-dynamic-extent.

The following functions are called by the language processor
as the result of a local optimize declaration.

∙ add-inline.
∙ add-speed.
∙ add-compilation-speed.
∙ add-debug.
∙ add-safety.
∙ add-space.

3.3 Restricting the environment

Recall that the description of the function enclose in section
8.5 of CLtL2 mentions that the consequences are undefined if
the lambda-expression argument contains references to enti-
ties in the environment that are not available at compile time,
such as lexically visible bindings of variable and functions,
go tags, or block names.

As a service to a robust implementation of the enclose

function, the Trucler library provides a function named
restrict-for-macrolet-expander that takes an environ-
ment as an argument and returns an environment that con-
tains only entities available at compile time. Using this func-
tion, the implementation of enclose can return a function
that will signal an error if the lambda-expression argument
contains unavailable references.

3.4 The reference implementation

Trucler supports some existing Common Lisp implementa-
tions as described in Section 3.5, but it also comes with a
reference implementation that can be used by a new Common
Lisp implementation that does not have its own representa-
tion of lexical environments. The reference implementation
is used by SICL11 for instance.

In the reference implementation, a lexical environment is
represented as a standard object containing a slot for each
type of description to be returned by a query function as
described in Section 3.1. Each slot contains a list of descrip-
tions ordered from innermost to outermost. A query function
merely returns the first item on the list that matches the
name that was passed as an argument to the query func-
tion. As a direct consequence of this representation, there is
no performance penalty in the query functions, due to the
fact that a new environment is created for every call to an
augmentation function.

In order to create new objects such as environments or
descriptions, we use a technique that we call quasi cloning.
A generic function named cloning-information is called
with the original object as an argument. This function then
returns a list of pairs. The first element of the pair is a
slot initialization argument for the class of the object and

11https://github.com/robert-strandh/SICL

the second element of the pair is the name of a slot reader
for the same slot. This information is then used to access
slots in the original object and to pass that information
as an initialization argument to make-instance. We call it
quasi cloning, because some new value is prepended to the
initialization arguments so that the copy is like the original,
except for one slot.

The advantage of quasi cloning is that Trucler does not
need to know the right class to instantiate. It creates an
instance of the same class as the original object, and that
class can be defined by client code. Client code must define a
method on cloning-information, but this generic function
uses the append method combination, so that only slots
defined by client code need to be mentioned in that method.

Occasionally, an entirely new instance of some class must
be created, rather than being obtained by quasi cloning an ex-
isting instance. This situation occurs when information about
a new item such as a local variable or a local function must be
used to augment an existing environment. To allow Trucler
to create an instance of a class that has been determined by
client code, Trucler first calls what we call a factory func-
tion. This function takes the client object and returns the
class metaobject to instantiate. For example, to create an in-
stance of a class that describes lexical variables, Trucler calls
the function lexical-variable-description-class, pass-
ing it the client object supplied by client code. The de-
fault method on this generic function returns the default
class used by the reference implementation, but client code
that needs additional information about lexical variables
may create a subclass of the default class, and a method
on lexical-variable-description-class that returns this
subclass.

3.5 Supported Common Lisp
implementations

Trucler currently provides support for SBCL and CCL. Con-
tributions for other Common Lisp implementations are wel-
come. With these implementations, it is possible to write
code walkers that are portable across different Common Lisp
implementations. In particular, a Cleavir-based compiler can
compile source code for any of the supported implementa-
tions.

3.6 Examples

In this section, we show some examples of how Trucler can
be used by a code walker. All examples are from Cleavir
used in the SICL compiler. We have simplified the examples
compared to the actual code, in order to avoid too much
clutter. For example, we have omitted the handling of error
situations and restarts.

The part of Cleavir that uses Trucler is the phase that
converts a concrete syntax tree (CST) to an abstract syntax
tree (AST). A concrete syntax tree can be thought of as a
Common Lisp expression but where each sub-expression is
wrapped in a standard object that holds additional informa-
tion such as source location. At the core of this compilation



ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

phase is the generic function convert-cst. For each class
of description objects that Trucler can return, this generic
function has a method specialized to that class.

The function convert-cst is called by a top-level function
convert that determines the structure of the expression to
convert and calls the appropriate Trucler query function
and then invokes convert-cst with the object returned by
Trucler.

The method specialized to local-macro-description looks
like this:

(defmethod convert-cst

(client

cst

(info trucler:local-macro-description)

environment)

(let* ((expander (trucler:expander info))

(expanded-form

(expand-macro expander cst environment))

(expanded-cst

(cst:reconstruct expanded-form cst client)))

(setf (cst:source expanded-cst) (cst:source cst))

(with-preserved-toplevel-ness

(convert client expanded-cst environment))))

As we can see, this method is specialized to the Trucler
class local-macro-description, and no other parameter is
specialized. The code calls the accessor expander on the info
parameter, which returns the macro expander associated with
the local macro.

The function expand-macro is responsible for taking into
account *macroexpand-hook* as the Common Lisp standard
requires. The call to reconstruct has to do with preserving
source information in the expanded form. The essence of the
body is the call to convert which converts the expanded
form (wrapped in a concrete syntax tree).

The next example shows how the environment is aug-
mented when a block special form is converted:

(defmethod convert-special

(client

(symbol (eql ’block))

cst

environment)

(cst:db origin (block-cst name-cst . body-cst) cst

(declare (ignore block-cst))

(let ((name (cst:raw name-cst)))

(let* ((ast (cleavir-ast:make-ast

’cleavir-ast:block-ast))

(new-environment

(trucler:add-block

client environment name ast)))

(setf (cleavir-ast:body-ast ast)

(process-progn

client

(convert-sequence

client body-cst new-environment)

environment))

ast))))

In the example above, cst:db is a version of the standard
Common Lisp operator destructuring-bind, that is used to

destructure concrete syntax trees as opposed to ordinary Com-
mon Lisp source expressions. The last argument to add-block
is an optional argument that Trucler calls identity and that
Trucler stores in the environment, associated with the block
information. The nature of the object supplied is entirely
determined by client code. In our case, we supply an abstract
syntax tree that represents the block special form so that
when an associated return-from is found, the two abstract
syntax trees can be connected.

The essence of the method body is the call to the function
named convert-sequence which converts the body of the
block form in the original environment augmented with
information about the block form.

4 BENEFITS OF OUR TECHNIQUE

The query functions of our protocol are generic functions,
allowing client code to define methods for overriding or ex-
tending default behavior. For this purpose, the query func-
tions all have a client parameter. Default methods supplied
by Trucler do not specialize to this parameter, but client
code should supply a standard object as the corresponding
argument when these functions are called. The class of this
argument can then be used in primary or auxiliary methods
defined by client code, thereby allowing arbitrary customiza-
tion of the library.

Furthermore, each query function returns an instance of a
standard class, rather than multiple values. Client code can
define subclasses of the classes used by the query functions.
In particular, for objects in the global environment, client
code can return instances of classes containing arbitrary in-
formation that it finds useful for the language processor. For
example, if a global function turns out to be a generic func-
tion, client code can then return a subclass of the Trucler
class global-function-description that contains informa-
tion such as the the generic-function class, the method class,
and the method combination, as we suggested in our paper
about make-method-lambda [2].

5 DISADVANTAGES OF OUR
TECHNIQUE

Compared to the protocol defined in CLtL2, our protocol
probably involves more memory allocation, or “consing”.
Multiple values are likely to be handled without memory
allocation in most high-end Common Lisp implementations,
whereas our query functions return standard objects which
obviously need to be allocated. Initializing the slots of these
standard objects also comes with an additional cost.

To make things worse, our protocol is able to add a single
mapping for each call to a protocol function, whereas the
CLtL2 protocol function augment-environment is able to
add an arbitrary number of mappings with a single call.

Our protocol consists of generic functions, and in implemen-
tations with a mediocre implementation of generic dispatch,
our protocol can require more resources for function calls.
Furthermore, the multiple values returned by the CLtL2
protocol are likely transmitted to the caller in registers or



A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

some other relatively direct location, whereas the informa-
tion returned by our query functions is present in slots of the
standard objects being returned. Accessing this information
involves calling a slot reader, which involves another call to
a generic function.

However, we believe that the work done by the code walker
of a compiler is small compared to that of other compilation
phases such as optimization of intermediate code.

6 CONCLUSIONS AND FUTURE
WORK

We have defined a CLOS-based protocol for lexical environ-
ments. This protocol can be used by any code walker such
as a compiler or a version of macroexpand-all. Compared
to the protocol defined in CLtL2 [4], ours is complete in that
it has operators for querying an environment for references
to tags and blocks, and for augmenting environments with
such entities.

Furthermore, our protocol is implemented in the Trucler
library. Trucler supplies implementations for some existing
Common Lisp implementations, currently SBCL and CCL.
The library also contains a reference implementation that can
be used in new Common Lisp implementations that do not
have an existing native representation of lexical environments,
such as SICL and Clasp.

Future work involves adding more supported existing Com-
mon Lisp implementations. Individual implementations may
require additional protocol functions, but such functions will
have names in a package that is specific to the implementa-
tion.

Future work also involves investigating what new function-
ality might be required in the reference implementation in
order to support specific requirements of new Common Lisp
implementations that choose to use an extended version of
the Trucler reference implementation.

7 ACKNOWLEDGMENTS

We would like to thank Jan Morningen and Karsten Poeck
for reading an early draft of the paper and for suggesting
improvements. Furthermore, we would like to thank Martin
Simmons for explaining the wordings in the documentation
of the CLtL2 protocol for LispWorks.

REFERENCES
[1] INCITS 226-1994[S2008] Information Technology, Programming

Language, Common Lisp. American National Standards Institute,
1994.

[2] Irène Durand and Robert Strandh. MAKE-METHOD-LAMBDA
revisited. In Nicolas Neuss, editor, Proceedings of the 12th Eu-
ropean Lisp Symposium (ELS 2019), Genova, Italy, April 1-2,
2019, pages 20–23. ELSAA, 2019. doi: 10.5281/zenodo.2634303.
URL https://doi.org/10.5281/zenodo.2634303.

[3] Michael Raskin. Writing a best-effort portable code walker in
Common Lisp. In Proceedings of the 10th European Lisp Sym-
posium (ELS 2017), Brussels, Belgium, April 3-4, 2017, pages
98 – 105. ELSAA, April 2017. doi: 10.5281/zenodo.3254669. URL
https://doi.org/10.5281/zenodo.3254669.

[4] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.).
Digital Press, Newton, MA, USA, 1990. ISBN 1-55558-041-6.

https://doi.org/10.5281/zenodo.2634303
https://doi.org/10.5281/zenodo.3254669

	Abstract
	1 Introduction
	2 Previous work
	2.1 Common Lisp the Language, second edition
	2.2 SBCL
	2.3 CCL
	2.4 CMUCL
	2.5 ECL
	2.6 Clasp
	2.7 Allegro
	2.8 LispWorks
	2.9 CLtL2 compatibility system
	2.10 Software including a code walker

	3 Our technique
	3.1 Querying the environment
	3.2 Augmenting the environment
	3.3 Restricting the environment
	3.4 The reference implementation
	3.5 Supported Common Lisp implementations
	3.6 Examples

	4 Benefits of our technique
	5 Disadvantages of our technique
	6 Conclusions and future work
	7 Acknowledgments
	References

