Call-site optimization for Common Lisp

Robert Strandh

robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux
Talence, France

ABSTRACT

A function call in a language such as Common Lisp can be
fairly costly. Not only is an indirection required so that a
redefinition of the callee can take effect for subsequent calls,
but several features of Common Lisp can have an even greater
impact on the performance of function calls. The presence
of optional parameters and/or keyword parameters requires
some non-trivial argument parsing in the callee. And when the
callee is a generic function, it must invoke the discriminating
function in order to dispatch to the effective method that
is determined by the arguments. Restrictions such as the
required boxing of all arguments can make function calls slow
for full-word integer and floating-point numbers.

In this paper, we propose a very general technique for
improving the performance of function calls in Common Lisp.
Our technique is based on call-site optimization, meaning that
each call site can be automatically customized for the callee
according to the number and the types of the arguments
being transmitted to the callee. Our technique is based on
the call site being implemented as an unconditional jump to
a trampoline snippet that is generated by the callee according
to information provided by the caller with respect to the
arguments. Thus, the callee is able to fully customize the call,
thereby avoiding many costly steps of a function call such as
indirections, boxing/unboxing, argument parsing, and more.

CCS CONCEPTS

e Software and its engineering — Software perfor-
mance; Runtime environments;

KEYWORDS

Common Lisp, Performance, Call-site optimization

ACM Reference Format:

Robert Strandh. 2021. Call-site optimization for Common Lisp.
In Proceedings of the 14th FEuropean Lisp Symposium (ELS’21).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/
zenodo.4709958

1 INTRODUCTION

Function calls in a dynamic language like Common Lisp can
be significantly more expensive in terms of processor cycles

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ELS’21, May 03-04 2021, Online, Everywhere

© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4709958

than function calls in a typical static language. There are
several reasons for this additional cost:

(1) With late binding being a requirement, i.e., the fact
that functions can be removed or redefined at run-time,
and that callers must take such updates into account,
it is necessary to have some indirection that can be
modified at run-time. Mechanisms such as compiler
macros and inlining break this requirement, which is
often a serious drawback to their use.

(2) Common Lisp has a rich function-call protocol with
optional parameters and keyword parameters. Keyword
parameters, in particular, require some considerable
run-time parsing for every call to a function that has
such parameters.

(3) In general, a function that can honor its contract only
for certain types of its arguments must check such
types for each call.

(4) All objects must be bozed in order to be used as func-
tion arguments. For example, IEEE double-float values
will typically have to be allocated on the heap, though
so-called NaN-boxing [4] can eliminate that particular
case. Full-word integers still require boxing, however.
Similarly, boxing is required for values returned by a
function.

(5) Generic functions can be dynamically updated by the
addition or removal of methods. Thus, even when the
callee is a known generic function, callers can make no
assumptions about which methods might be applicable.

(6) The fact that a function can return multiple values
requires the callee to return additional information
about the number of return values, and callers that
accept multiple values must retrieve this information in
order to access the return values, and use default values
when it expects more values than the callee returned.

In a typical Common Lisp implementation, item number 1
is handled by an indirection in the form of a slot in the
symbol naming the function, requiring a memory access. On
modern processors a memory indirect branch is more costly
than a direct branch. Even if the branch-prediction logic of
the processor is able to make the right decision in the indirect
case, there is at least the additional cost of accessing the
cache.

Item number 2 can be mitigated by the use of compiler
macros. Essentially, the creator of a function with a non-
trivial lambda list can also create special versions of this
function for various argument lists. A call with an argument
list that is recognized by the compiler macro can then be
replaced by a call to such a special version, presumably with
a simpler lambda list.

https://doi.org/10.5281/zenodo.4709958
https://doi.org/10.5281/zenodo.4709958
https://doi.org/10.5281/zenodo.4709958

ELS'21, May 03-04 2021, Online, Everywhere

Item number 3 can be handled by inlining, allowing the
compiler to take advantage of type inference and type dec-
larations to determine that some type checks can be elided.
However, inlining has the disadvantage that a redefinition
of the callee will not automatically be taken into account,
thereby requiring the caller to be recompiled for the redefini-
tion to be effective.

The problem indicated by item number 4 can be largely
eliminated by the use of more than one entry point for func-
tions, one of which would accept unboxed arguments. This
technique is used by Allegro Common Lisp® which also allows
for functions to return a single unboxed value.

Concerning item number 5, the main difference between
function redefinition and generic-function updates is that a
generic function consists of independent effective methods,
only one of which is applicable for a particular call. To
determine which effective method is applicable, in the general
case some significant generic dispatch, based on the class or
the identity of arguments, may be required.

A common technique for handling item number 6 is to
recognize that most callers will use only a single return value.
Then, if the callee returns no values, the register holding the
first return value will nevertheless be initialized to nil. As
a result, callers that use a single return value never have to
test the number of values actually returned.

In this paper, we propose a very general technique for call-
site optimization that can handle many of the issues listed
at the beginning of this section. We plan to incorporate this
technique in the SICL? implementation of the Common Lisp
language.

2 PREVIOUS WORK

To our knowledge, no work on call-site optimization has been
published in the context of Common Lisp, though some practi-
cal work exists in the form of code in certain implementations,
as explained in Section 2.2.

The absence of published work is perhaps due to the many
unique features of Common Lisp functions, that make the task
very difficult, such as keyword arguments, generic functions
with arbitrary method combinations, etc.

2.1 Inline caching

One technique that is fairly common is inline caching, pi-
oneered by Smalltalk [2]. This technique is used to avoid
repeated method selection in a particular call site. The key
observation is that, for a particular call site, often the same
method is concerned each time the call is made. By caching
the latest method, keyed by the distinguished class argument,
the system can often avoid a costlier computation.

The purpose of inline caching being to reduce the cost
of finding the applicable effective method, it is not directly
related to speeding up function calls, but it has the effect of
making calls to generic functions faster.

Lhttps://franz.com /products/allegro-common-lisp/
Zhttps://github.com/robert-strandh /SICL

Robert Strandh

2.2 Ctors

The CMUCL? implementation of the Common Lisp language
uses a technique that they call ctors that can be used for call-
site optimization of certain functions. This optimization was
introduced by Gerd Moellmann in 2002, and has since been
included also in SBCL*, which is a derivative of CMUCL. In
particular, in CMUCL the technique is used for the function
make-instance which is often called with a literal class name
and literal keywords for the initialization arguments. When
the name of the class to instantiate is a literal, several steps
in the object-initialization protocol can be simplified.

Most importantly, checking the validity of the initialization
arguments can be done once and for all, subject only to added
or removed methods on the functions initialize-instance
and shared-initialize and to updates to the class being
instantiated.

CMUCL accomplishes the optimization by replacing (using
a compiler macro) the original call to make-instance by a
call to a funcallable object that is specific to the name of the
class and the literal keyword arguments given. The funcallable
instance function of the funcallable object is updated as a
result of added or removed methods and modified classes
as mentioned. This technique can be used on other, similar
functions. For example, slot-value is often called with a
constant slot name, and this fact has been explored by SBCL.

Since the optimization is done as a manual source-code
transformation, it is applicable mainly to standard functions
that can not change later on. The mechanism presented in
this paper can be seen as an automatic low-overhead version
of ctors.

A similar mechanism (called “constructor functions”) ex-
ists in Allegro Common Lisp. And the Clasp Common Lisp im-
plementation® uses a similar mechanism for make-instance,
change-class, and reinitialize-instance.

2.3 Sealing

Sealing is a mechanism that allows the programmer to freeze
the definitions of various program elements such as classes and
generic functions. The work by Heisig [5] applies to Common
Lisp and can allow for certain call sites to be optimized to
different degrees, from bypassing generic dispatch to fully
inlining entire effective methods.

3 MAIN FEATURES OF THE SICL
SYSTEM

In this section, we give a quick overview of the main features
of our system SICL. The important aspect of our system in
order for the technique described in this paper to work is
that code is not moved by the garbage collector, as described
below.

SICL is a system that is written entirely in Common Lisp.
Thanks to the particular bootstrapping technique [1] that
we developed for SICL, most parts of the system can use

Shttps://cmucl.org
“http://www.sbcl.org/
5 https://github.com/clasp-developers/clasp

Call-site optimization for Common Lisp

the entire language for their implementation. We thus avoid
having to keep track of what particular subset of the language
is allowed for the implementation of each module.

We have multiple objectives for the SICL system, including
exemplary maintainability and good performance. However,
the most important objective in the context of this paper is
that the design of the garbage collector is such that executable
instructions do not move as a result of a collection cycle. Our
design is based on that of a concurrent generational collector
for the ML language [3]. We use a nursery generation for
each thread, and a global heap for shared objects. So, for the
purpose of the current work, the important feature of the
garbage collector is that the objects in the global heap do
not move, and that all executable code is allocated in that
global heap.

The fact that code does not move is beneficial for the
instruction cache; moreover it crucially allows us to allocate
different objects in the global heap containing machine in-
structions, and to use fixed relative addresses to refer to one
such object from another such object.

4 OUR TECHNIQUE
4.1 Function call

A function call involves a first-class object called a function
object or a function for short. In general, a function may
refer to variables introduced in some outer scope, so that the
function is a closure. The (typically native) instructions to
be executed by the function must be able to refer to such
closed-over variables. But the values of such variables may
vary according to the flow of control at run time. This situa-
tion is handled by a compile-time procedure called closure
conversion whereby a static environment is determined for
each function object. A function object thus consists at least
of an entry point, which is the address of the code to be
executed (and which is shared between all closures with the
same code) and an object representing the static environ-
ment (which is specific to each function object). A function
call must therefore contain instructions to access the static
environment and put it in an agreed-upon place (typically a
register), before control is transferred to the entry point.

This work covers function calls to functions that are named
at the call site. The most common such case is when the
name of the function appears in the operator position of
a compound form. Less common cases include arguments
of the form (function mame) to some standard functions
such as funcall and apply. In particular, expansions of
the setf macro are often of the form (funcall (function
(setf symbol)) ...) because function names like (setf
symbol) are not allowed in an operator position.

In general, with such named function calls, the function
associated with the name can be altered at run time, or
it can be made undefined by the use of fmakunbound. For
that reason, the caller can make no assumptions about the
signature of the callee. This issue is solved by a standardized
function-call protocol that dictates where the caller places
the arguments it passes to the callee.

ELS’21, May 03-04 2021, Online, Everywhere

Thus, for the purpose of this work, we define a function
call to be the code that accomplishes the following tasks:

(1) It accesses the arguments to be passed to the callee from
the places they have been stored after computation,
and puts the arguments in the places where the callee
expects them.

(2) It accesses the function object associated with the
name at the call site and stores it in some temporary
location.

(3) From the function object, it accesses the static envi-
ronment to be passed to the code of the callee.

(4) Also from the function object, it accesses the entry
point of the function, i.e., typically the address of the
first instruction of the code of the callee.

(5) It transfers control to the entry point, using an instruc-
tion that saves the return address for use by the callee
to return to the caller.

(6) Upon callee return, it accesses the return values from
the places they have been stored by the callee, and
puts those values in the places where the caller requires
them for further computation.

In a typical implementation, a function call is generated
when the code of the caller is compiled, and it then never
changes. As mentioned above, for this permanent code to
work, a particular function-call protocol must be observed,
and that protocol must be independent of the callee, as the
callee may change after the caller has been compiled.

Our technique optimizes function calls to functions in the
global environment such that the name of the callee is known
statically, i.e., at compile time. There are three different types
of forms that correspond to this description and that are
considered in this work:

(1) A function form where the operator is a symbol naming
a function in the global environment, and that does
not correspond to any of the following two form types.
We use the term ordinary function form for this case.

(2) A function form where the operator is the symbol
funcall and the first argument is either a literal symbol
or a function special form with a function name.

(3) A function form where the operator is the symbol apply
and the first argument is either a literal symbol or a
function special form with a function name.

The first type of form can be considered as special syntax for
a funcall form with a constant function name.

There are some other cases that we do not intend to cover,
in particular a call to multiple-value-call with a named
function argument. In fact, the third type of form could be
generalized to cover other functions that are commonly used
with a constant function argument, such as mapcar. At the
moment, we are not considering such additional cases.

With our suggested technique, for these three different
form types, the function call is created by the callee. We
discuss each form type separately.

ELS'21, May 03-04 2021, Online, Everywhere

global heap
call site -~ ~ s
- caller
.7 code
unconciitional
jump ,
instructions | |
| [|
| |
\\ — .
N snippet
S — i
| |
| |
| |
| |
callee
code

Figure 1: Caller, callee, and snippet in the global
heap.

4.2 Ordinary function form

The code emitted by the caller for a function call consists of
a single unconditional jump instruction. The target address
in that instruction is altered by the callee according to its
structure. The code for the function call is contained in an
object that we call a trampoline snippet, or just snippet for
short. The callee allocates an appropriate snippet in the
global heap as described in Section 3, at some available
location, and the unconditional jump instruction of the caller
is modified so that it performs a jump to the first instruction
of the snippet. The constellation of caller, callee, and snippet
is illustrated in Figure 1. We omitted an explicit indication of
a control transfer from the snippet to the callee code, because
such a control transfer is not always required.

When the callee changes in some way, a new snippet is
allocated and the jump instruction is altered to refer to the
position of the new snippet. The old snippet is then subject
to garbage collection like any other object. For the callee to
be able to alter the caller this way, a list of all call sites must
be accessible from the name of the callee. For an ordinary
Common Lisp implementation, the symbol used to name
the callee can store such a list. In SICL, this information
would be kept in the data structure describing the callee in
the first-class global environment [7]. Either way, to avoid
memory leaks, the call site should be referred to through a
weak reference.

When code containing a caller is loaded into the global
environment, and that caller contains a call site that refers to
a function that is not defined at the time the caller is loaded,
a default snippet is created. The default snippet contains the
same instructions that a traditional compiler would create
for a call to a function that might be redefined in the future.

Robert Strandh

global heap
call site -~ ~ .
\ caller

I < code
l l
| | _

L

call pass
instruction . | arguments .
— default snippet
process

|__values |

callee

return
- - code

instruction ~ ~

Figure 2: Default snippet.

Thus, the default snippet contains code to put arguments in
places dictated by the calling conventions, and it accesses
return values from predefined places. It also accesses the
function indirectly, either through a symbol object (as most
Common Lisp systems probably do) or through a separate
function cell as described in our paper on first-class global
environments [7]. The default snippet is illustrated in Figure 2.
The default snippet is also used when the definition of the
callee changes, as described below. A default snippet for each
call site can either be kept around, or allocated as needed.
The former situation is advantageous for a callee with many
call sites and for callees that are frequently redefined, as it
decreases the time to load a new version of the callee.

In order for the callee to be able to adapt the snippet to
its requirements, the caller, when loaded into the executing
image, must provide information about its call sites to the
system. Each call site contains information such as:

e The name of the callee.

e The number of arguments.

e The type of each argument. If the type is not known, it
is indicated as t. When an argument is a literal object,
its type is indicated as (eql ...).

e For each argument, whether the argument is boxed or
unboxed.

e For each argument, its location. The location can be
a register or a stack position in the form of an offset
from a frame pointer.

e The number of required return values, or an indica-
tion that all return values are required, no matter the
number.

e In case of a fixed number of return values, for each
such value, some limited information of the type of

Call-site optimization for Common Lisp

each value. See below for a more elaborate explanation
of the restrictions involved for this information.

e Also, in case of a fixed number of return values, for
each such value, the location where the caller expects
the value.

e Indication as to whether the call is a tail call, in which
case the snippet should deallocate the frame before
returning.

A callee can take advantage of this information to cus-
tomize the call. The default action is to generate a snippet
that implements the full function-call protocol, without tak-
ing into account information about the types of the argu-
ments.

While our technique allows for information provided by the
caller to be taken into account by the callee in various ways,
the opposite direction is not generally possible. The reason
is that the callee can change or be redefined in arbitrary
ways, and the caller code is fixed, so it can not adapt to such
changes in the callee. The only place where some limited
amount of adaptation is possible is in the snippet, after the
callee code returns.

A direct consequence to this one-directional dependency
is that the caller can not, in general, dictate the type of the
return values. The current callee will produce the values that
its code dictates, no matter what the caller needs. However, it
is quite advantageous to be able to return unboxed values of
certain types; in particular full-word floating point numbers.
For that reason, we allow some restricted type information to
be provided by the caller. Thus, if the caller indicates a type
other than t for some return value, it has to be one of a small
number of fixed types, for example double-float, character,
(signed-byte 64) and (unsigned-byte 64) (assuming a 64-
bit architecture). When one of these types is indicated by
the caller, the meaning is that the caller requires an unboxed
value of this type. Then, if the callee cannot supply such a
value, code is generated in the snippet to signal an error.

When a modification is made to a callee that alters its
semantics, care must be taken so as to respect the overall
semantics of all callers. In particular, a callee can be re-
moved using fmakunbound or entirely replaced using (setf
fdefinition). In that case, the following steps are taken in
order:

(1) First, every call site is de-optimized, which means that
a default snippet is allocated for each caller, or the
kept default snippet is reused. The unconditional jump
instruction is modified to refer to the default snippet.
As previously explained, this snippet contains code
for the full function-call protocol, and in particular,
it accesses the callee using an indirection through the
function cell.

(2) Next, the callee is atomically replaced by a new func-
tion, or entirely removed by a single modification to
the contents of the function cell.

(3) The new function is attached to the list of call sites,
and, depending on the nature of the new function, new

ELS’21, May 03-04 2021, Online, Everywhere

snippets can then be allocated in order to improve
performance of calls to the new function.

When new snippets are substituted, actions may be needed to
ensure that that processors do not use stale code. Depending
on the types of processors involved, such actions include
flushing instruction caches and prefetch pipelines.

The thread responsible for redefining the callee, blocks
until step 1 is accomplished. Without this blocking, some
callers may get the old version of the callee and some others
the new version, thereby violating the overall semantics of a
function redefinition. In some cases, it may be acceptable for
different callers to get different versions, but in the general
case, i.e., when it is observable which versions are used, it
is not acceptable. Because of this requirement, redefining
a function can be an expensive operation, but redefining a
function is expected to be infrequent compared to calling it.

Step 3, on the other hand can be accomplished asyn-
chronously, and even in parallel with caller threads, pro-
vided that appropriate synchronization prevents subsequent
simultaneous redefinitions of the callee.

4.3 funcall with known function name
There are two subcases for this type of form:

(1) The first argument is a special form quote with the
argument being a symbol. This case can occur as a
result of the programmer wanting to avoid capture of
the function name, and make sure the name refers to
the function with that name in the global environment.
It can also occur in the expansion of a macro form.

(2) The first argument is a special form function. This
case typically occurs as a result of expanding a setf
macro form and the function name is then of the form
(setf symbol). The expansion uses funcall simply
because a function name of this form can not be used
as the operator of a function form. This case can also
occur in the expansion of a macro form.

To handle this case, the compiler treats the symbol funcall
as a special operator. If the first argument corresponds to
any of the two subcases, then the call is treated in the same
way as an ordinary function form. Otherwise it generates a
call to the function funcall.

4.4 apply with known function name

As with funcall, the same two subcases exist for apply,
and for the same reason. Again, the compiler treats the
symbol apply as a special operator and generates a call to
the function apply whenever the first argument is neither
the special form quote nor the special form function.
However, the case of apply is of course more complex
than that of funcall. Recall that apply takes at least two
arguments. The first argument is a function designator as with
funcall. The remaining arguments represent a spreadable
argument list designator, which means that the last argument
is treated as a list of objects, and the arguments to the
callee are the objects in that list, preceded by the remaining
arguments to apply, in the order that they appear.

ELS'21, May 03-04 2021, Online, Everywhere

A very common subcase of this case is a call to apply with
exactly two arguments. It is used when the execution of some
code results in a list of objects, and these objects must be
passed as the arguments to some function, in the order that
they appear in the list. For this subcase, our technique can be
used to avoid the indirection to find the callee entry point as
usual. But it can also be used to access the callee arguments
directly from the list of objects, so as to avoid unpacking the
list to locations dictated by the full call protocol.

A more interesting subcase is that of some intermediate
function wanting to override some, but not all of the keyword
arguments that it was passed, before calling the callee. The re-
maining arguments to apply are then typically keyword/value
pairs. Our technique can then be used to avoid scanning the
last argument to apply for these keyword arguments. Recall
that the standard allows for multiple occurrences of the same
keyword argument in an argument list, and that the first
occurrence is then the one that is used.

Call-site information resulting from a call to apply must be
indicated as such, so that the call-site manager can process the
arguments as a spreadable argument list designator, rather
than as an ordinary suite of arguments.

5 BENEFITS OF OUR TECHNIQUE

Our technique makes possible several features that are not
possible when a function call is created by the caller, without
knowledge about the callee.

For starters, at least one indirection can be avoided, thereby
saving a memory access. When the call is generated by the
caller, there must be an indirection through some kind of
function cell, unless the callee is a function that is known
never to change. This indirection is required so that a re-
definition of the callee is taken into account by the next
call. A typical Common Lisp implementation uses a symbol
(the name of the function) for this indirection, whereas SICL
uses a separate cons cell, but the cost is the same. With our
technique, when a callee is altered, the snippet is modified.
As a result, no indirection® is required. Furthermore, in SICL
all functions are standard objects, which requires another
indirection from the header object to the so-called rack where
the entry point is stored.

A more significant benefit than saving an indirection is
that argument parsing can be greatly simplified. Even in
the simple case where all parameters are required, it is no
longer necessary for the caller to pass the argument count,
nor for the callee to check that it corresponds to the number
of parameters. But the advantages are even greater in the
presence of optional parameters and in particular for keyword
parameters. In a typical call with keyword parameters, the
keywords are literals. The argument list can then be parsed
once and for all when the snippet is created, and the argu-
ments can be directly copied to the locations required by
the callee. This possibility largely eliminates the need for
separate compiler macros, as the purpose of a compiler macro
is precisely to take advantage of some known structure of the

GThough, the snippet is itself a kind of indirection, of course.

Robert Strandh

list of argument, in order to substitute a call to a specialized
version of the callee.

The specialized function call can admit unboxed arguments.
Avoiding boxing is particularly useful for applications that
manipulate floating-point values that are at least the size
of the machine word, say IEEE double or quadruple floats
in a 64-bit system. When a general-purpose function-call
protocol is used, each such argument must be encapsulated
in a memory-allocated object before the call, and often, the
argument will immediately be unboxed by the callee for
further processing.

Return values benefit from the same advantages as argu-
ments. Often, the number of values required by the caller is
known statically. The callee can then specialize the transfer
of those values to the right locations in the caller. And if
the caller requires fewer values than the callee computes, the
callee can sometimes be specialized so that extraneous return
values do not need to be computed at all. As with arguments,
return values can be unboxed, again avoiding costly memory
allocations.

When the callee is a generic function, a specialized discrim-
inating function can often be created, provided that enough
type information is made available by the caller for the argu-
ments that correspond to specializers of some methods of the
generic function. In the extreme (but common) case where
the callee is a slot accessor and the class of the specialized
argument is known, the snippet can contain the full code to
access the slot, without any need to call a particular method
function.

Often, inlining is used to improve the performance of
function calls, either by the application programmer or by the
system itself. But inlining some function necessarily increases
the code size of each caller of that function. Furthermore,
the semantics of inlining are such that the caller must be
recompiled for a modified callee to be taken into account. Our
technique can often provide enough performance improvement
to make inlining unnecessary. Total code size will then be
smaller, and the disadvantage of inlining with respect to
callee redefinition is eliminated.

Compared to the so-called ctor technique describe in Sec-
tion 2.2, our technique is more general, since it does not
involve any source-code transformations. Thus, it can be
used with functions defined by the application programmer,
and that can change at any point after the callee has been
compiled. Furthermore, the ctor technique still requires at
least one, probably two, indirections (one to access the fun-
callable object and another one to access the entry point).
However, our technique in itself can of course not accomplish
the entire optimization machinery required to optimize a func-
tion such as make-instance, as knowledge of its semantics
is required for such optimization.

6 DISADVANTAGES OF OUR
TECHNIQUE

The proposed technique is fairly complicated. In order for all
the advantages to be had, the callee must be represented in

Call-site optimization for Common Lisp

such a way that multiple versions can be created, depending
on different information provided by each caller. On the other
hand, most of the benefit of this technique can be obtained
with a limited amount of such flexibility. Bypassing argument
parsing in the presence of optional or keyword parameters will
already provide great benefits. For this benefit to be as useful
as possible, it is advantageous to compile a callee in two parts;
one part that allows for its parameters to be positioned in
any places (registers or stack frame locations) that makes the
remaining code as fast as possible, and one part that parses
arguments from their default locations into those places. The
callee can then generate code for the snippets that moves the
arguments passed by the caller to those final places.

The garbage collector must not reclaim snippets that are
currently in use, and “in use” can mean that a callee has an
activation record on the call stack, so that the snippet can
not be reclaimed until the activation record is removed from
the stack. As a result, a modification to the garbage collector
is required, and code for garbage collectors is notoriously
hard to get right.

The technique involves the creation of two unconditional
jump instructions; one from the core code of the caller to
the snippet and another one from the snippet back to the
core code of the caller. These additional instructions must be
executed, which may use up processor cycles. However, on
most modern processors, unconditional jumps are very fast
[6].

Finally, there may be some slightly increased probability
of contention in the instruction cache, due to the fact that
snippets are allocated wherever the global memory manager
can fit them.

7 CONCLUSIONS AND FUTURE
WORK

We have presented a very general technique for call-site
optimization. Our technique subsumes (entirely or partially)
several other techniques such as inlining, compiler macros,
sealing.

Our technique is very general, and promises several ad-
vantages to function-call performance that can not easily be
obtained with other techniques. The flip side is that our tech-
nique is fairly complicated and requires significant support
from both the compiler and the memory manager.

Furthermore, we have not implemented the suggested tech-
nique, and the state of the SICL system is not yet such that
it can be done soon. The most urgent future work, then, is
to create a native SICL executable. We are probably several
months away before this work can be accomplished.

8 ACKNOWLEDGMENTS

We would like to thank Frode Fjeld and David Murray for
providing valuable feedback on early drafts of this paper. We
would also like to thank Duane Rettig for his remarks, and for
valuable information about several optimization techniques
used in Allegro Common Lisp.

ELS’21, May 03-04 2021, Online, Everywhere

REFERENCES

[1] Bootstrapping Common Lisp using Common Lisp, April 2019.
Zenodo. doi: 10.5281/zenodo.2634314. URL https://doi.org/10.
5281 /zenodo.2634314.

[2] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation
of the smalltalk-80 system. In POPL ’8/: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 297-302. ACM, 1984. ISBN 0-89791-125-3.
doi: 10.1145/800017.800542.

[3] Damien Doligez and Xavier Leroy. A concurrent, generational
garbage collector for a multithreaded implementation of ML. In
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 113-123, March
1993. URL http://www.acm.org:80/pubs/citations/proceedings/
plan/158511/p113-doligez/.

[4] David Gudeman. Representing Type Information in Dynamically
Typed Languages. Technical Report TR 93 27, Department of
Computer Science, The University of Arizona, October 1993.

[5] Marco Heisig. Sealable Metaobjects for Common Lisp. In Proceed-
ings of the 13th European Lisp Symposium, ELS ’20, pages 26 —
32, April 2020. URL http://www.european-lisp-symposium.org/
static/proceedings/2020.pdf.

[6] John L. Hennessy and David A. Patterson. Computer Architecture,
Sixzth Edition: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 6th edition, 2017. ISBN
0128119055.

[7] Robert Strandh. First-class global environments in common lisp. In
Proceedings of the 8th European Lisp Symposium, ELS ’15, pages
79 — 86, April 2015. URL http://www.european-lisp-symposium.
org/editions/2015/ELS2015.pdf.

https://doi.org/10.5281/zenodo.2634314
https://doi.org/10.5281/zenodo.2634314
http://www.acm.org:80/pubs/citations/proceedings/plan/158511/p113-doligez/
http://www.acm.org:80/pubs/citations/proceedings/plan/158511/p113-doligez/
http://www.european-lisp-symposium.org/static/proceedings/2020.pdf
http://www.european-lisp-symposium.org/static/proceedings/2020.pdf
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf

	Abstract
	1 Introduction
	2 Previous work
	2.1 Inline caching
	2.2 Ctors
	2.3 Sealing

	3 Main features of the SICL system
	4 Our technique
	4.1 Function call
	4.2 Ordinary function form
	4.3 funcall with known function name
	4.4 apply with known function name

	5 Benefits of our technique
	6 Disadvantages of our technique
	7 Conclusions and future work
	8 Acknowledgments
	References

