Bootstrapping Common Lisp using Common Lisp

Iréene Durand
Robert Strandh
irene.durand@u-bordeaux.fr
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux
Talence, France

ABSTRACT

Some Common Lisp implementations evolve through careful
modifications to an existing image. Most of the remaining
implementations are bootstrapped using some lower-level
language, typically C. As far as we know, only SBCL is
bootstrapped from source code written mainly in Common
Lisp. But, in most cases, there is no profound reason for using
a language other than Common Lisp for creating a Common
Lisp system, though there are some annoying details that
have to be dealt with.

We describe the bootstrapping technique used with SICL,
a modern implementation of Common Lisp. Though both
SICL and the bootstrapping procedure for creating it are
still being worked on, they are sufficiently evolved that the
big picture outlined in this paper will remain valid. Our
technique uses first-class global environments to isolate the
host environment from the environments required during the
bootstrapping procedure. Contrary to SBCL, and implemen-
tations written in some other language, in SICL, we build the
CLOS MOPclasses and generic functions first. This technique
allows us to use the CLOS machinery for many other parts of
the system, thereby decreasing the amount of special-purpose
code, and improving maintainability of the system.

CCS CONCEPTS

e Software and its engineering — Compilers; Multi-
paradigm languages;

KEYWORDS
CLOS, Common Lisp, Compilation, Bootstrapping

ACM Reference Format:

Iréne Durand and Robert Strandh. 2021. Bootstrapping Common
Lisp using Common Lisp. In Proceedings of the 12th European
Lisp Symposium (ELS’19). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281 /zenodo.2634314

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ELS’19, April 01-02 2019, Genova, Italy

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2634314

1 INTRODUCTION

In this paper' , by bootstrapping a Common Lisp system we
mean creating some target Common Lisp system by build-
ing it from its associated source code, using various tools
and language processors to transform that source code into
an executable file for some typical operating system such as
GNU/Linux. The typical way of making such a target Com-
mon Lisp system evolve through maintenance, is to modify
its source code and then restart the bootstrapping procedure
to build an updated executable file.

Not all Common Lisp systems are created so that they
can evolve this way. Some systems evolve by the careful
modification of an existing ezrecuting image which is then
saved as an executable file that can be executed as usual.

In this paper we will concentrate on the technique of
bootstrapping used with SICLZ.

Before we can start investigating different options for boot-
strapping, we must deal with an annoying but crucial detail,
namely the definition of source code. The Free Software Foun-
dation defines it as “the preferred form of a work for making
modifications to it”. We agree completely with this definition.
It excludes the use of code that was automatically produced.
In practice, it also excludes code written directly in machine
language and most code written in assembly language, with
the exception of (a) small code fragments that can not be ex-
pressed easily in some other language, and (b) code fragments
that are part of a code generator written in some higher-level
language.

However, for it to be possible for the source code of a
Common Lisp system to be turned into an executable file,
there must be language processors (i.e., compilers and/or
interpreters) available that can handle the languages that the
source code is expressed in. The main debate when it comes
to bootstrapping techniques seems to be what is meant by
available in this context. A common definition seems to be
something like whatever is available on a GNU/Linuzx system
out of the box.

One of the consequences of such a definition of available
is that, in order to write a Common Lisp system, one has to
use some programming language considered lower level than
Common Lisp itself. Typically, C plays this role.

In this paper, we argue that one of the main reasons of
the creator(s) of a target Common Lisp system wanting such

1In this paper, we assume that the reader is familiar with the metaob-
ject protocol for implementing CLOS, as described in the book [1] that
is dedicated to the subject.
Zhttps://github.com/robert-strandh/SICL

https://doi.org/10.5281/zenodo.2634314
https://doi.org/10.5281/zenodo.2634314

Bootstrapping Common Lisp using Common Lisp

a system in the first place, is that they are convinced of the
virtues of this language for writing programs. Furthermore,
Common Lisp is uniquely well adapted to writing language
processors. The obvious choice for a language for writing a
Common Lisp system is therefore Common Lisp itself. Since
there is now a multitude of good Common Lisp implementa-
tions available and easily installable on widely-used operating
systems, we think that Common Lisp should be considered
to be a language for which there are language processors
available for bootstrapping.

2 PREVIOUS WORK

2.1 Overview of existing techniques

In his excellent paper describing how SBCL is bootstrapped
[2], Rhodes gives an overview of how different existing Com-
mon Lisp systems are made to evolve. Below, we summarize
the contents of that paper.

We can divide Common Lisp implementations into those
that are mostly written in some other language, and those
that are mostly written in Common Lisp.

In the first category, there are implementations that specif-
ically cater to applications written in that other language and
that need some scripting capabilities that are supplied by the
Common Lisp implementation. Whether it is advantageous
or not for these implementations to be written mainly in that
other language is outside the scope of this paper.

Of the implementations in the second category that are
currently actively used, Rhodes claims® that Allegro, Lisp-
Works, CMUCL, Scieneer, and CCL are only possible to
build using older versions of the same system, and only using
image-based techniques. Only SBCL can be bootstrapped
using several other Common Lisp implementations.

Even a Common Lisp implementation that is largely writ-
ten in Common Lisp such as SBCL has some amount of code
written in other languages. In the case of SBCL, Rhodes gives
the number 35000 lines of C and assembly code “for services
such as signal handling and garbage collection”, of which
8000 is for the garbage collector. The remaining lines can
be summarized as around 2000 lines per operating system
supported. This is a very modest amount of code written in
other languages.

2.2 Common Lisp systems in other
languages

When a language such as C or C++ is used to implement a
Common Lisp system, a small subset of the Common Lisp
language is implemented this way. We call that subset the base
language. The result of the initial bootstrapping procedure
is typically an executable file containing the base system.
Additional modules are then added to the base system to
obtain a complete Common Lisp system. These additional
modules must be implemented in the subset of Common Lisp
defined by the base language and previously added modules.
3For the commercial Common Lisp implementations cited in the paper

by Rhodes, he includes a disclaimer that only anecdotal evidence for
this information is available.

ELS'19, April 01-02 2019, Genova, ltaly

There are several issues with this technique. For one thing,
some major components that would be more easily expressed
in Common Lisp must be written using the implementation
language so that new modules can be added to the system,
in particular a reader and an evaluator.

Another major issue has to do with maintenance. When
one of the additional modules is modified, it is easy to for-
get exactly what subset of the Common Lisp language is
allowed at that point in the bootstrapping procedure. The
code for a particular module must often be expressed in
some unidiomatic way and it is tempting to make the modi-
fied code more idiomatic, but doing so will then break the
bootstrapping procedure.

2.3 Common Lisp systems in Common
Lisp

Because of the way compilation is defined by the Common
Lisp standard, there are some issues that need to be resolved
in order for it to be possible for a target Common Lisp system
to be bootstrapped on a host Common Lisp system. Since
SBCL is very likely the only Common Lisp implementation
written mostly in Common Lisp that can be built from an
existing Common Lisp implementation, we describe how
SBCL solves some of these issues.

2.3.1 Packages and environments. Most existing Common
Lisp systems have a single global environment that is used
both as the compilation environment and as the run-time
environment. Compiling Common Lisp source code requires
the existence of definitions of macros, types, etc. in that
environment, and when source code for a target Common Lisp
system is compiled using a host Common Lisp system, these
definitions must be those of the target system. However, with
a single global environment there can only be one definition
of these entities.

SBCL solves this problem by using different package names
for the code of the host system and the target system. In a
final step, the packages of the target system are then renamed
to conform to the standard.

2.3.2 The compiler and CLOS. Some aspects of CLOS re-
quire the presence of the compiler, at least if the resulting
code is required to have some reasonable performance. In
particular, the compiler is required to create a discriminating
function from the effective methods? returned by compute-
-effective-method. For that reason, it becomes difficult to
use generic functions and standard classes in the code of the
compiler itself.

SBCL solves this issue by not using generic functions and
standard classes in the code of the compiler. Thus, SBCL
can load the compiler into a minimal running target system
and then bootstrap CLOS afterwards.

However, not using generic functions and standard classes
in the compiler has some of the same problems as Common

4Recall that the result of a call to compute-effective-method is a
lambda expression. This lambda expression must be turned into some-
thing that is executable, hence the need for an evaluator.

ELS'19, April 01-02 2019, Genova, ltaly

Lisp systems that are written in some other language, namely
that care has to be taken to make sure the proper subset
of the language is used when the code of the compiler is
being worked on. Furthermore, generic functions and standard
classes are great tools for structuring complex code, so not
being able to use these tools in such a significant and complex
part of a Common Lisp implementation negatively affects
the clarity and maintainability of the code.

3 THE SICL SOURCE CODE

SICL is a system that is written entirely in Common Lisp.
We decided to use the full language to implement the system
so as to avoid having to define and remember what subset of
the language is allowed for which modules. Thus, the com-
piler, called Cleavir®, makes heavy use of generic functions
and classes. By using these two types of objects, we can
have a compiler that is adaptable to different Common Lisp
implementations. It is currently used as the main compiler
of Clasp®, and recently, a Cleavir-based compiler has been
written for CLISP”.

In addition to using the full language for the implementa-
tion of SICL, we want the code to be as idiomatic as possible.
For example, our definition of the class t, looks like this:

(defclass t ()
O

(:metaclass built-in-class))

This definition clearly expresses the characteristics of the
class t. It has no superclasses because no superclasses are
explicitly mentioned, and the metaclass built-in-class does
not provide any default superclasses like standard-class and

funcallable-standard-class do. While this definition of
the class t is clear, it is not operational as is. The metaclass

built-in-class is an indirect subclass of the class t, so
the class t must exist in order for the class built-in-class
to exist.

Our definitions of the classes class and standard-class
look like this:®

(defclass class (specializer)
((Yname :initform nil :initarg :name ...)

(%direct-subclasses :initform >() ...)))

(defclass standard-class (class)
C...))

Again, these definitions are clear. No metaclass option is
given, so the metaclass defaults to standard-class. Like the
defintion of t, these definitions are not operational as is,
because the class standard-class must exist in order to be
the metaclass of itself.

In a Common Lisp implementation that must bootstrap
CLOS from a subset of the language that does not include
CLOS, some other mechanism must be used. As an example

5Cleavir resides in the SICL repository on GitHub.
Shttps://github.com/clasp-developers

"https:/ /clisp.sourceforge.io/

8In reality, there are intermediate classes between class and
standard-class that are not shown here.

Iréne Durand and Robert Strandh

of the consequences of the use of such a subset, consider the
following definitions from ECL®:
(defparameter +class-slots+

‘(,0+specializer-slots+

(name :initarg :name :initform nil ...)
(direct-subclasses :initform nil ...)
.o))

(defparameter +standard-class-slots+
(append +class-slots+
> ((optimize-slot-access)
(forward))))

Here, two special variables are defined, each one containing
the specifications of the direct slots of a class. These two def-
initions express the exact same information as two defclass
forms defining the classes class and standard-class, re-
spectively. However, because the defclass form can not be
used at this stage of the bootstrapping procedure, a different
mechanism must be used.

In addition to using the CLOS machinery for defining the
classes defined by the metaobject protocol, we use the same
machinery for defining system classes. For example, our defi-
nition of the class symbol looks like this:

(defclass symbol (t)
((%name :reader symbol-name)
(%package :reader symbol-package))
(:metaclass built-in-class))

Not only is this definition clear, it is also operational. By
using the CLOS machinery for definitions of system classes,
we avoid having to use an additional, special, mechanism for
this purpose.
In contrast, consider this definition of the system class
symbol from SBCL:
(define-primitive-object
(symbol :lowtag other-pointer-lowtag
:widetag symbol-header-widetag
:alloc-trans Y%make-symbol
:type symbol)

(name :ref-trans symbol-name :init :arg)
(package :ref-trans symbol-package
:set-trans %set-symbol-package
:init :null)
)
Again, a special mechanism must be used, since CLOS is not
available when the type symbol must be defined.

The purpose of the SICL bootstrapping procedure is to
make these idiomatic definitions operational in the host envi-
ronment so as to create a graph of objects isomorphic to that
of the target system, and then to create the target graph in
an executable file.

By doing it this way, we simplify system maintenance. The
bootstrapping procedure is able to work with the definitions
of classes, generic functions, and methods using the standard

9https://common-lisp.net/project/ecl/

Bootstrapping Common Lisp using Common Lisp

macros defclass, defgeneric, and defmethod, even though
these definitions would not be operational in a system that
needs to build up functionality from a language subset that
does not include CLOS. The SICL maintainer is thus free to
alter definitions of core system objects, relying on the boot-
strapping procedure to make those definitions operational
and ultimately turning them into an executable system.

4 OUR TECHNIQUE

4.1 SICL object representation
A SICL object is represented in one of three different ways:

e As an immediate object where the object is stored
in the pointer itself, with the appropriate tag bits.
Fixnums, characters and single floats are represented
this way.

e As a two-word block. This is how cons cells are repre-
sented.

e As a two-word block called a header where the first
word points to a class object, and the second word
points to a sequence of words, called the rack, that
contains the slots of the object. All objects other than
immediates and cons cells are represented this way.
We call this representation a general instance.

The first word of the rack contains a stamp which is a
unique integer taken from the class when the instance was
created. The stamps of the arguments to a generic function
are used by the generic dispatch technique to determine which
effective method to execute. The object representation and
generic dispatch technique has been described in detail previ-
ously [3], but this short summary is sufficient to understand
our bootstrapping technique.

In the description of our technique, we use the word class
in a general way, as an object that can be used as a model
for the creation of instances. Thus the word class does not
imply that it is a class in the sense of the host Common
Lisp implementation. While this usage of the word class may
seem odd, recall that a class is just an ordinary Common
Lisp object that is passed as an argument to make-instance
and other functions called by it which then returns a different
object. We exploit this idea by supplying our own definition
of make-instance in different phases of the bootstrapping
procedure.

Similarly, we use the word generic function in a general
way, as an object that can be executed and that can have
methods associated with it, providing partial implementa-
tions of the generic function. Again, while this usage of the
word generic function may seem odd, recall that a generic
function is simply an ordinary Common Lisp object of type
funcallable-standard-object for which the ultimate defi-
nition (called the discriminating function) is computed by
combining partial definitions (the methods) associated with
it. We exploit this fact by providing different representations
of generic functions in different phases of the bootstrapping
procedure, and by supplying different versions of compute-
-discriminating-function adapted to each phase. Thus, a
generic function is not a generic function in the sense of

ELS'19, April 01-02 2019, Genova, ltaly

the host Common Lisp implementation. However, during the
bootstrapping procedure, these objects are executable in the
host system, because they are instances of the host class
funcallable-standard-object.

4.2 Environments for bootstrapping

Our technique uses several first-class global environments [5]
to create a graph of objects that is isomorphic to the graph
of objects to be written to the executable file instantiating
the target Common Lisp implementation. By using first-
class global environments, we avoid the problems related to
packages and environments cited in Section 2.3. The main
feature of our technique, though, is that we create the generic
functions and classes of the metaobject protocol first.

The environments are filled with definitions mainly as a re-
sult of loading files containing production SICL code, though
some code specific to bootstrapping is required as discussed
at the end of this section. This loading procedure uses the
Eclector'® reader and the Cleavir compiler to produce inter-
mediate code in the form of a fairly conventional flow graph
of instructions. The Cleavir compiler takes a first-class global
environment as an argument, and uses this environment to
search for definitions of macros, classes, types, etc. The re-
sulting intermediate code is then translated in two different
ways:

(1) Native target code is generated from it, and attached
to host objects representing executable target objects
such as ordinary functions, generic functions, and meth-
ods.!

(2) It is translated to a simple subset of Common Lisp code
that accesses that same environment for definitions of
functions and other objects. This Common Lisp code
is then compiled using the host compiler in order to
make it executable in the host.

The remainder of this section is concerned with how the
host-executable code is used in order to determine the graph
of target objects represented as an isomorphic graph of host
objects.

4.3 Definitions

In preparation for the bootstrapping procedure, several first-
class global environments are created and filled with defini-
tions of SICL macros. The definitions of those macros reside
in production SICL files. Little or no special code is required
for those definitions.

A number of host object types are used during bootstrap-
ping, in particular symbols, packages, cons cells, and integers.
However, when such an object is used as an argument to a
SICL generic function, a special version of class-of assigns
a SICL class object as its type. Some of the host functions
operating on these kinds of objects are imported to our envi-
ronments in preparation for the bootstrapping procedure.

1O%https://github.com/robert-strandh/Eclector
'We do not yet have a code generator for native executable code, so
currently this part of the bootstrapping procedure is omitted.

ELS'19, April 01-02 2019, Genova, ltaly

To facilitate the description of our technique, we need some
definitions:

Definition 4.1. A host class is a class in the host system.
If it is an instance of the host class standard-class, then it
is typically created by the host macro defclass.

Definition 4.2. A host instance is an instance of a host
class. If it is an instance of the host class standard-object,
then it is typically created by a call to the host function
make-instance using a host class or the name of a host class.

Definition 4.3. A host generic function is a generic func-
tion created by the host macro defgeneric, so it is a host
instance of the host class generic-function. Arguments to
the discriminating function of such a generic function are
host instances. The host function class-of is called on some
required arguments in order to determine what methods to
call.

Definition 4.4. A host method is a method created by the
host macro defmethod, so it is a host instance of the host
class method. The class specializers of such a method are host
classes.

Definition 4.5. A simple host instance is a host instance
that is neither a host class nor a host generic function.

Definition 4.6. An ersatz instance is a target general in-
stance (as defined in Section 4.1) represented as a host data
structure, using a host standard object to represent the header
and a host simple vector to represent the rack. In fact, in
order for the ersatz instance to be callable as a function in
the host system, the header is an instance of the host class
funcallable-standard-object.

Definition 4.7. An ersatz instance is said to be pure if the
class slot of the header is also an ersatz instance. An ersatz
instance is said to be impure if it is not pure. See below for
more information on impure ersatz instances.

Definition 4.8. An ersatz class is an ersatz instance that
can be instantiated to obtain another ersatz instance.

Definition 4.9. An ersatz generic function is an ersatz
instance that is also a generic function. It is possible for an
ersatz generic function to be executed in the host system
because the header object is an instance of the host class
funcallable-standard-object. The methods on an ersatz
generic function are ersatz methods.

Definition 4.10. An ersatz method is an ersatz instance
that is also a method.

Definition 4.11. A bridge class is a representation of a
target class as a simple host instance. An impure ersatz
instance has a bridge class in the class slot of its header. A
bridge class can be instantiated to obtain an impure ersatz
instance.

Definition 4.12. A bridge generic function is a represen-
tation of a target generic function as a simple host instance,
though in order for it to be executed by the host, it is an in-
stance of the host function funcallable-standard-object.

Iréne Durand and Robert Strandh

instance
of

su\zclaC
1)

standard- funcallable- built- standard-
generic- standard- in- class
function class class

Figure 1: Simplified diagram of MOP classes.

Arguments to a bridge generic function are ersatz instances.
The bridge generic function dispatches on the stamp (See
Section 4.1.) of its required arguments.

The methods on a bridge generic function are bridge meth-
ods.

Definition 4.13. A bridge method is a target method rep-
resented as a simple host instance. The class specializers of
such a method are bridge classes. The method function of a
bridge method is an ordinary host function.

4.4 Bootstrapping phases

The essence of our technique consists of four phases (1 to 4),
using six first-class global environments. An initial phase 0
imports host classes to environment Fy. Only classes that are
required in phase 1 are imported. Classes standard-method,
standard-generic-function, and the class used to represent
slots standard-direct-slot-definition are imported with
the same. Classes standard-class, built-in-class, and
funcallable-standard-class in environment Fgy all refer
to one and the same host class, namely a subclass of the host
class funcallable-standard-class.

In each phase i > 0, three first-class global environments
are involved, F;_1, F;, and F;11. Before phase i starts, F;_1
contains classes to be instantiated during phase ¢, and E;
contains generic functions that are not involved in phase
i, but that will be used in phase i + 1 to operate on the
instances of the classes in F;_1. Some of the generic functions
in F; are accessor functions containing methods that were
automatically added as a result of the classes in F;_1 being
defined. Others are higher-level functions that call those
accessors to accomplish tasks such as initialization of various
metaobjects, class finalization, creation of effective methods,
and creation of discriminating functions.

A phase i has two main steps:

(1) Accessor generic functions are created in E; 41 by load-
ing SICL production code containing defgeneric forms.
These generic functions are accessor functions for MOP
classes and MOP generic functions. These functions

Bootstrapping Common Lisp using Common Lisp

I

host bridge ersatz
object object object

Figure 2: Objects in different phases.

EO

i

Ll
El ﬁ
i

=

1

—

Figure 3: Phase 1.

are created in F;4+; rather than in E; so as to protect
the existing functions in F; that are needed later.

(2) Classes are created in E; by loading SICL production
code containing defclass forms. As a result of the
creation of these classes, methods are automatically
added to the corresponding accessor generic functions
in Ei+1.

Depending on the phase, SICL production code might be
loaded before the first step, between the two steps, or after
the last step.

Four phases accomplish the creation of a number of objects,
ending with a complete set of ersatz objects. The result of
each phase is illustrated by a separate figure. In these figures,
the shape of each object illustrates its type as shown in
Figure 2.

The four phases accomplish this following results:

(1) Host classes and host class metaclasses in Ey are used
to create host generic functions in F2 and host classes
in Ey. The result of this phase is illustrated in Figure 3.

(2) Host classes in E; are used to create bridge generic
functions in E3 and bridge classes in F3. The result of
this phase is illustrated in Figure 4.

(3) Bridge classes in E» are used to create impure ersatz
generic functions in F4 and impure ersatz classes in
E3. The result of this phase is illustrated in Figure 5.

(4) Impure ersatz classes in E3 are used to create pure
ersatz generic functions in Fs and pure ersatz classes in
E4. The result of this phase is illustrated in Figure 6.

The result of these phases is that the impure ersatz generic
functions in environment F4 can operate on the pure ersatz
generic function in environment Fs and on the pure ersatz
classes in Fy4. But they can also operate on impure ersatz

ELS'19, April 01-02 2019, Genova, ltaly

El D
4;“ | 77
H
E2

instance of ————
subclass of e
operateson ~~_ __-7

Figure 4: Phase 2.

T

instance of ———

subclass of e
operateson ~__ _ _>

Figure 5: Phase 3.

instance of —— =
subclass of C
operateson ~__ _ _»

Figure 6: Phase 4.

objects, provided their call caches contain entries for the
corresponding stamps. Filling the call caches is the purpose
of our satiation technique [4].

ELS'19, April 01-02 2019, Genova, ltaly

4.5 Tying the knot

At the end of these four phases, we have fully functional
impure ersatz generic functions in environment F4, and fully
functional impure classes in environment F3. But we still do
not have the cyclic graph of metaobjects that a functioning
CLOS system requires. Furthermore, there are still bridge
generic functions that might be called in order to operate on
our impure ersatz metaobjects.

To accomplish the conversion of this hierarchy of objects
to a cyclic graph, we need to modify the class slot of the
headers of each impure metaobject so that instead of referring
to a bridge class, it refers to an impure ersatz class. This
operation will transform every impure ersatz metaobject into
a pure ersatz metaobject. However, there are a few more
operations required to completely remove all references to
bridge metaobjects:

e Each ersatz metaobject contains a list of the effective
slot definition metaobjects of its class as the second
word of the rack. In an impure ersatz metaobject, those
effective slot definitions are bridge objects. Once the
class field of the impure ersatz metaobject has been
updated, this list must be updated to contain a refer-
ence to the list of the ersatz effective slot definitions
from the new ersatz class.

e Each ersatz generic function contains a slot contain-
ing the method class of the methods on this generic
function. In an impure ersatz generic function, this slot
refers to a bridge class, so it must also be updated.

‘We must still find and update all impure ersatz metaob-
jects in the system. For classes and generic functions, this is
trivial, as they are all reachable from the first-class global
environment they are defined in. For other object types such
as methods, slot-definitions, and method combinations, this
is not the case. They must be found by a traversal of the
class or generic function metaobject that they are part of.
Such a traversal is straightforward.

Before the cyclic graph can be traversed and an isomorphic
graph be generated in a native executable file, additional
definitions must be loaded:

e Standard classes that are needed in order for the re-
sulting native executable to be viable must be loaded.
In particular, definitions of classes such as symbol,
package, cons, sequence, list, null, number, rational,
integer, and fixnum are needed in order for it to be
possible to load compiled code into the executing im-
age.

e Many standard functions are also needed, such as func-
tions on packages, lists, hash tables, etc. Functions that
operate on first-class global environments are needed
as well.

e A simple version of the compiler must be loaded so that
the resulting executable image can construct discrimi-
nating functions when definitions of generic functions
and methods are loaded.

On the other hand, the garbage collector may not be needed
in the initial executable image, though the data structures

Iréne Durand and Robert Strandh

that the garbage collector works with must of course be
present so that objects can be laid out in memory.

5 BENEFITS OF OUR TECHNIQUE

Appendix C of “The Art of the Metaobject Protocol” [1]
(Living with Circularity) cites a number of ways in which
their system handles circularity and avoids bootstrapping
and metastability issues.

5.1 Bootstrapping benefits

The first bootstrapping problem that is mentioned is the fact
that standard-class must exist before it can be created.
Their solution is to create this class using some special-case
mechanism. Our technique uses the version of standard-class
in the preceding environment, so this problem is avoided al-
together. As a result, we can freely modify the definition of
standard-class and rerun the bootstrapping procedure. No
special case has to be considered.

The second bootstrapping problem mentioned is that
generic functions are used for method lookup, but these
generic functions can not exist until a significant part of the
protocol has been implemented. As an example, take the
call to ensure-class made as a result of executing the ex-
pansion of a defclass form. By having ensure-class check
for the special case when the argument is standard-class
and by supplying a special function for creating instances
of standard-class they avoid bootstrapping issues, simply
because during bootstrapping, all classes created will be
instances of standard-class. They also supply a special
version of finalize-inheritance that checks for the meta-
class standard-class and calls special-purpose code in this
case. With our technique, no such special case is needed. All
classes that are instantiated are fully operational in the pre-
ceding environment, as is the finalize-inheritance generic
function.

5.2 Metastability benefits

The first example of a metastability problem mentioned in
the book is that slot-value calls slot-value-using-class
which then calls slot-location which in turn recursively
calls slot-value on the class metaobject to access the slot
metaobjects of the class. The authors propose to solve this
problem by arranging for the function slot-location to
check for the special argument effective-slots and return
a predefined location. Our technique does not need this kind
of special case, because the function class-slots does not
call slot-value at all. It accesses the effective-slots slot
directly, using its location. This location has been compiled in
during the creation of the effective method and discriminating
function for class-slots.

The final issue discussed in the book arises because the
function compute-discriminating-function is also a generic
function that can not be called with itself as an argument
when a method has been added or removed from it. Again
they solve the issue by a special case whereby a test is made
to see whether the argument is a standard generic function

Bootstrapping Common Lisp using Common Lisp

(i-e. an instance of standard-generic-function) and if so, a
special version of compute-discriminating-function which
is not a generic function is called instead. With our technique,
every generic function, compute-discriminating-function
included, has a call cache that includes an effective method
that is able to handle arguments that are direct instances of
standard-generic-function. That call cache entry is not in-
validated when compute-discriminating-function has new
methods added to it, at least not when the methods added
respect the restrictions of the metaobject protocol, i.e. that
user code is not allowed to add methods that are applicable
when given only standard objects as arguments.

5.3 Other benefits

In addition to solving the bootstrapping issues and the
metastability issues given in the “The Art of the Metaobject
Protocol” book, our technique has several additional benefits.

Since we begin the bootstrapping procedure by defining
the classes and generic functions specified by the metaobject
protocol, we are able to use the CLOS machinery to define
system classes. In a system where CLOS is added late, many
system classes must be defined using some other mechanism.

Furthermore, as already mentioned, our technique has
great advantages to maintenance. There are no dependencies
between CLOS code and other code that require duplication
of information that must be kept synchronized when some
code is modified.

6 CONCLUSIONS AND FUTURE
WORK

We have described a technique for bootstrapping a Common
Lisp system using an existing conforming Common Lisp sys-
tem that is also supported by the library closer-mop. To our
knowledge, no existing Common Lisp system is bootstrapped
this way.

There are several advantages to our technique:

e The full Common Lisp language can be used in order to
implement the system, including the compiler, thereby
making the code more maintainable.

e By bootstrapping the MOP generic functions and the
hierarchy of classes first, we eliminate the bootstrap-
ping problems and metastability problems cited by the
AMOP book [1].

e Also, by bootstrapping the MOP machinery first, we
take advantage of it by using it to define all the stan-
dard system classes, thereby eliminating the need for
special mechanisms for this purpose.

e The absence of special mechanisms that are needed in
existing implementations for defining many aspects of
the system itself, further contributes to the maintain-
ability of our code.

Even though the technique outlined in this paper is known
to work, many more aspects of the system need further work,
including the bootstrapping technique itself, in order for a
native executable to be generated:

ELS'19, April 01-02 2019, Genova, ltaly

e We must supply a (simple) code generator that trans-
lates intermediate code to native code. The amount of
work required is fairly modest, and mainly consists of
creating native code for memory operations such as car
and standard-instance-access, for object allocation,
and for simple arithmetic on fixnums.

e Interface code to the operating system must be sup-
plied, in particular for input/output operations.

e We have yet to write the code that translates the host
representation of the object graph into a native repre-
sentation. Special care must be taken for object types
that are imported from the host during bootstrapping,
such as symbols, numbers, and cons cells.

However, we are in no hurry to create a native executable
system. The moment we do, we lose a fairly good environment
(namely the host Common Lisp system) for debugging our
code. Instead, we plan to use the host environment for testing
as many aspects of SICL as possible, and for creating support
for better debugging capabilities, and only later create a
native executable.

In terms of future work, there are still several optimiza-
tion techniques that need to be implemented for the Cleavir
compiler framework.

7 ACKNOWLEDGMENTS

We would like to thank David Murray for providing valuable
feedback on early versions of this paper.

REFERENCES

[1] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, USA, 1991. ISBN
0262111586.

[2] Christophe Rhodes. Self-sustaining systems. chapter SBCL:
A Sanely-Bootstrappable Common Lisp, pages 74—86. Springer-
Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-89274-8. doi:
10.1007/978-3-540-89275-5_5. URL http://dx.doi.org/10.1007/
978-3-540-89275-5_5.

[3] Robert Strandh. Fast generic dispatch for common lisp. In Pro-
ceedings of ILC 2014 on 8th International Lisp Conference,
ILC ’14, pages 89:89-89:96, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2931-6. doi: 10.1145/2635648.2635654. URL
http://doi.acm.org/10.1145/2635648.2635654.

[4] Robert Strandh. Resolving metastability issues during bootstrap-
ping. In Proceedings of ILC 2014 on 8th International Lisp Con-
ference, ILC ’14, pages 103:103-103:106, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2931-6. doi: 10.1145/2635648.2635656.
URL http://doi.acm.org/10.1145/2635648.2635656.

[5] Robert Strandh. First-class global environments in common lisp. In
Proceedings of the 8th European Lisp Symposium, ELS ’15, pages
79 — 86, April 2015. URL http://www.european-lisp-symposium.
org/editions/2015/ELS2015.pdf.

http://dx.doi.org/10.1007/978-3-540-89275-5_5
http://dx.doi.org/10.1007/978-3-540-89275-5_5
http://doi.acm.org/10.1145/2635648.2635654
http://doi.acm.org/10.1145/2635648.2635656
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf

	Abstract
	1 Introduction
	2 Previous work
	2.1 Overview of existing techniques
	2.2 Common Lisp systems in other languages
	2.3 Common Lisp systems in Common Lisp

	3 The SICL source code
	4 Our technique
	4.1 SICL object representation
	4.2 Environments for bootstrapping
	4.3 Definitions
	4.4 Bootstrapping phases
	4.5 Tying the knot

	5 Benefits of our technique
	5.1 Bootstrapping benefits
	5.2 Metastability benefits
	5.3 Other benefits

	6 Conclusions and future work
	7 Acknowledgments
	References

